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Abstract

Experiments help to understand human—computer interaction and to
characterize the value of user interfaces. Yet, few intermediate guide-
lines exist on how to design, run, and report experiments. The present
monograph presents such guidelines. We briefly argue why experiments
are invaluable for advancing human—computer interaction beyond tech-
nical innovation. We then identify heuristics of doing good experiments,
including how to build on existing work in devising hypotheses and
selecting measures; how to craft challenging comparisons, rather than
biased win—lose setups; how to design experiments so as to rule out
alternative explanations; how to provide evidence for conclusions; and
how to narrate findings. These heuristics are exemplified by excellent
experiments in human—computer interaction.



Contents

1 Introduction

2 Why Conduct Experiments?

2.1 Reasons for Experiments
2.2 Alternatives to Experiments

3 How to Conduct Good Experiments?

3.1 Finding a Significant and Interesting Research Question
3.2 Some Heuristics for Good Experiments

4 Designing Experiments

4.1 Hypotheses and Theory

4.2 Independent Variables

4.3 Structuring Experiments

4.4 Participants

4.5 Tasks and Activities

4.6 Setting

4.7 Dealing with Other Factors

4.8 Choosing Dependent Variables
4.9 Describing the Interaction Process

5 Running Experiments

Ne)

10

13

13
17
23
26
29
32
33
34
39

43



6 Reporting Experiments

6.1 Justify the Design

6.2 Provide Evidence

6.3 Narrate Results for the Reader

6.4 Acknowledge Alternative Interpretations
and Limitations of Results

7 Pragmatics of Experiments

8 Conclusion

Acknowledgments

References

47

48
49
58
60

63

67

69

71



1

Introduction

This work began as an attempt to answer a colleague’s question. For
some time I had insisted that we run experiments on a new interaction
paradigm that we had been working on. My colleague had asked for
papers that would convince him why we should do experiments at all.
He also quickly asked for papers that explained how to do those exper-
iments, seeing my expression of disbelief after the first question. I was
unable, however, to give him entirely satisfactory references: this forms
the background for the present work.

A fair number of papers describe how to do experiments in human—
computer interaction (HCI). For instance, Landauer [86] gave a classic
discussion of research methods in HCI, including valuable advice on
statistical analysis and reporting. Blandford and colleagues [14] dis-
cussed how to plan, run, and report experiments in HCI, and pre-
sented an illustrative case study. Recently, Lazar et al. [90] published
a book on research methods in HCI that included several chapters
on designing and reporting experiments. Also, a number of papers
review experimentation on topics closely related to HCI, including
information retrieval [81], information visualization [21], and text edit-
ing [118]. More generally, a host of literature relevant to the design of
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experiments exists in the field of psychology [95, 122], sociology [142],
and ergonomics [34].

Why, then, another paper on experiments in HCI? First, the above
papers focus little on the questions that arise even when you understand
the basics of experimental logic, the distinction between independent
and dependent variables, and the concerns in ensuring statistical con-
clusion validity. Second, many of the papers referenced above focus
little on the specific difficulties arising from experimenting with inter-
faces and interactions. Third, while papers on specific topics are helpful,
they de-emphasize that many areas of HCI face similar questions about
why and how to do experiments.

We consider an experiment “a study in which an intervention is
deliberately introduced to observe its effects” [127], p. 12. The inter-
vention may be of a variety of kinds; in HCI it is often a technology,
but could be kinds of training, user group, use situation, or task. We
follow common practice by designating the intervention as a level of an
independent variable, or as a treatment, or as a condition. The effects
of the intervention are measured as dependent variables. In HCI they
will often include measures of the usability of the technology. Hypothe-
ses are statements that connect variation in independent variables to
expectations about variation in the dependent variables. Another defin-
ing characteristic of experiments is that they attempt to deal with
other factors besides the independent variable that influence the situ-
ation under study, and thus potentially affect the dependent variables
[42]. This may happen, for instance, by controlling such factors, hold-
ing them constant, or distributing them randomly across levels of the
independent variable. Finally, it is typical of experiments that the sit-
uation under study is created or initiated by the experimenter [42].
Figure 1.1 shows an outline of these components. Note that the above
definition excludes the understanding implied in some common usages
of the word experiment, including that of “trying something new” or
“an innovative act or procedure”.

The logic underlying experiments is tied to pioneering work in
the renaissance, in particular by Galileo Galilei and Francis Bacon.
Later, John Stuart Mill refined thinking about experiments by his Joint
Method of Agreement and Difference. The key idea is that effects occur
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Fig. 1.1 Typical components of experiments in human—computer interaction.

with their presumed causes and that any difference between outcomes
may be used to attribute causes; this idea is directly reflected in the
above definition of experiment. Bunge [15] and Shadish et al. [127]
further discuss the logic underlying experimentation and its historical
development.
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Why Conduct Experiments?

Experiments in HCI may be undertaken with a variety of aims. For
instance, experiments may be used to evaluate existing or new inter-
faces, establish guidelines and standards, discover scientific principles,
understand people’s use of technology, and test models of performance.
The present work concentrates on experiments where the levels of the
independent variables of key interest are user interfaces (UIs).

2.1 Reasons for Experiments

At a general level, it may be argued that experiments are necessary
in HCI to validate the technologies that we develop. The point has
repeatedly been made that computer scientists validate their technolo-
gies too infrequently [47, 135, 146]. Zhai et al. [147] argued that while
empirical evaluation has its problems, it is far superior to merely assert-
ing that a technology is valuable. Newman [106] compared abstracts of
engineering journals with abstracts of HCI proceedings. In engineer-
ing, papers more often presented validations of modeling techniques or
technical solutions; in HCI, papers often presented radical solutions,
that is, solutions building on or extending previous work. Validations
in HCI were much more rare than in engineering. Independently of
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6 Why Conduct Experiments?

whether the engineering profession is a viable ideal for HCI, Newman’s
data suggest that we were — and perhaps still are — much better at
proposing new technologies than at validating them.

A second reason for doing experiments is that they are particu-
larly valuable for answering some research questions in comparison to
alternative methods. Specifically, experiments allow us to investigate
use of technology without deploying it, to compress time and thereby
study infrequent phenomena, to study interaction that would other-
wise be unethical or impossible to obtain data about, to control exter-
nal factors, and to collect fine-grained data. It has been argued that
all research methods, including experiments, are valuable for particu-
lar purposes. In a paper on research methods that has been influential
in HCI, McGrath [96] stated that “all methods have inherent flaws,
though each has certain potential advantages” (p. 154). Weber [139]
made a compelling argument for method pluralism in asserting that
“excellent researchers simply choose a research method that fits their
purposes and get on with the business of doing their research” (p. xi)
and Firebaugh [37] wrote “Let method be the servant”. Platt [117,
p. 351] presented a similar argument:

Beware of the man of one method or one instru-
ment, either experimental or theoretical. He tends to
become method-oriented rather than problem-oriented.
The method-oriented man is shackled; the problem-
oriented man is at least reaching freely toward what
is most important.

Thus, independently of the vogues and waves of HCI, the argument
made here is that experiments form an essential part of our methodol-
ogy toolbox.

A third reason for experiments in HCI is to battle what Landauer
[86] called the “egocentric intuition fallacy”. Landauer argued that
we overestimate how well we can discover the mechanisms behind our
behavior and feeling of satisfaction. That makes it difficult to rely on
judgments about what works and does not work in an interface. At the
same time, we underestimate the extent to which we differ from other
people with respect to behavior and preferences. This is particularly



2.2 Alternatives to Experiments 7

problematic in HCI, where a number of the technologies that we pro-
pose will have been developed and iteratively refined by ourselves or
by close collaborators. Experiments help overcome this fallacy.

A common criticism of experiments is that they are hard to gener-
alize because they are artificial and narrow in scope. To this, several
answers are possible. McGrath [96] would argue that precision and
control in experiments come at the expense of realism. In laboratory
experiments, the situation under study would not occur without the
experimenter; participants’ motivation is thus a key difference between
experiments and, say, field studies. Another answer is that experiments
may not have generalization as their goal. Rather, they may be used
to show that something may happen (what Greenberg and Buxton [50]
called “existence proof”), to test generalizations (rather than making
them), or to understand the processes involved in a particular phe-
nomenon [100]. Still another answer is that the criticism that exper-
iments do not generalize to field settings may be invalid (or at best,
requiring an empirical answer). Campbell [18], for instance, argued that
in organizational psychology there is probably little difference between
the results of lab and field studies; Anderson et al. [6] argued that the
effect sizes found in laboratory and field research correlate strongly.
In contrast, Gerber and Green [45] argued that there are many differ-
ences between the results of lab and field studies. We will not attempt
to settle this complex discussion. Rather, because of the criticism of
experiments, we simply wanted to argue that in some circumstances
experiments are a useful and valid research approach.

2.2 Alternatives to Experiments

The previous section makes it clear that there are good arguments
for using experiments to answer some research questions. Following
the arguments attributed to McGrath [96], experiments — like any
other research method — have many limitations. Therefore, we briefly
discuss some alternatives and their relation to experiments. An in-depth
discussion of those alternative research methods is outside the scope of
this work, see instead any broadly covering book on research methods
(e.g., [90, 119]).
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In HCI, a couple of situations stand out where one should not do an
experiment, although many more may be identified for specific research
questions. One such situation is when the researchers are interested in
the uptake or appropriation of technology. Here, users’ choices and
motivation in using (or not using) technology are key factors, as is the
realism of their use. Often the aim is also to describe in rich ways how
users engage with technology. In such cases, an experiment is often not
the right method. Instead, one should think first about using a method
that emphasizes realism and/or rich description, such as a field study
or a qualitative interview.

A related situation is when the phenomenon of interest is not suffi-
ciently well understood to set up an experiment. This echoes the sen-
timent that “premature experimentation is a common research sin”
[127, p. 99]. Such a situation would occur if candidates for indepen-
dent variables cannot be identified or if more than one level of that
variable (say, an interface to compare an innovation against) cannot
be imagined. In my view, the latter sometimes occur for user interface
developments whose main contributions are technical or engineering.
Experiments are often attached to reports of such developments, even
if their outcome is mostly given in advance or their quality so low as to
distract readers from the main contribution. I believe that it is impor-
tant to appreciate — both for authors and reviewers — that many
technical /engineering contributions are wholly adequate for publishing
without an evaluation.

A final situation where experiments are unneeded occurs when the
aim is to drive development of an interface. In such cases, the rigor of
experiments is often not needed. Instead one may do usability studies
with few participants, possible studying only one interface condition.
Such a study may give plenty of information on how to improve an inter-
face (see [108] for advice on how to run such a study). Alternatively, one
may engage in longer-lasting iterative development with prospective
users, such as in long-term case studies [129]. Also in those situations,
the evaluations mainly serve to drive development and understand
utility of an interface to users; their goal is not to make rigorous infer-
ences about differences among conditions.
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How to Conduct Good Experiments?

Good experiments are hard to do. Before detailing the tactics of exper-
iments, we briefly discuss how to think about experiments at a slightly
higher level of abstraction. We first emphasize the need to be clear
about the research question or, put in another way, the purpose of run-
ning the experiment. Then, we discuss some high-level heuristics that
in our view help doing good experiments.

3.1 Finding a Significant and Interesting Research Question

Any consideration of how to do an experiment must depart from the
research question one wishes to address. Finding out what to study is
outside the scope of this work; see for instance Campbell et al. [19] or
McGuire [97] for inspiring ways to think about and develop research
questions. Here we assume that the research question being asked is sig-
nificant and interesting. To ensure this, one can think over two potential
objections to a finished and written up experiment: (1) “so what” and
(2) “no surprises” [37]. The “so what” objection suggests that imag-
ined results of an experiment should be interesting and nontrivial; they
should matter to theory or practice. Even if running and analyzing the
experiment proceeds as imagined, will people find it interesting? Will it
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add to our understanding of HCI in important ways? Sometimes, this
objection is voiced by reviewers as “this is not significant”, meaning
that while the findings are novel and valid, they do not add to the
research literature in a substantial and important manner.

The “no surprises” objection suggests that results should add to
or depart from what we already know; they should not be predictable
given earlier studies. As mentioned earlier, one should not do an experi-
ment if the results are clear in advance. For instance, if a simple predic-
tive model shows a user interface superior to another or if a technology
is obviously superior to an alternative then an experiment does not
have the possibility to surprise us. Sometimes, of course, new technolo-
gies, use situations, or user groups may make it hard to know if earlier
findings or theories apply. The “no surprises” objection may be raised
both because the experimental setup is biased (we will discuss how to
avoid this later) and because the results are easily predictable from the
literature (we will also discuss how to avoid this later). Most impor-
tantly, both of these objections can and should be considered before
deciding to run an experiment.

Finding significant and interesting research questions requires a
solid grasp of the literature. However, it is out of the scope of this
work to discuss how to identify and retrieve relevant earlier research
(see for instance Cooper [28]).

3.2 Some Heuristics for Good Experiments

The type of advice that the present work aims to give must necessar-
ily be heuristic and personal. Heuristic means that we give only weak
guidance at a level of abstraction to be fleshed out, traded-off, and
creatively applied; personal means that this guidance to some extent
is a matter of taste and style. Neither of these characteristics means
that there are no wrong decisions in experimental design, nor that any-
thing goes. Rather they suggest that some decisions in experimental
design are really complex, requiring creative ideas and difficulty choices.
Table 3.1 summarizes heuristics on how to conduct experiments. The
next sections will discuss in detail how to use these heuristics to design,
run, and report experiments.
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Heuristics for conducting experiments.

Heuristic

Explanation

How to?

Be focused

Use previous
work

Do strong
comparisons

Provide evidence

Narrate results

Bring an open
mind to analysis

Recognize
limitations

Respect
participants

Be pragmatic

Focus the experiment
through a clear research
question that drives the
design and
interpretation of results.

Build on previous work
in designing, running,
and reporting
experiments.

Make a challenging and
multifaceted
comparison, and
prevent uninteresting
findings by design.

Provide supporting data
for all main conclusions.

Explain results by
anticipating and
answering readers’
questions.

Explore alternative
hypotheses and theories
to understand data.

Acknowledge and
discuss limitations of
setup, data collection,
and analysis.

Treat participants, their
time, and the data they
create (behavior,
comments, etc.) with
respect.

Any experiment is
limited in its ability to
say anything
substantive.

Let the research question prescribe
methods and measures; simplify the
design; formulate hypotheses when
feasible; highlight contribution; produce
few “ticks”.

Motivate hypotheses by data and
theories; use validated ways of measuring;
replicate earlier findings; show
importance over prior work.

Use strong and non-obvious hypotheses;
avoid win—lose setups; use strong
baselines; compare more than two
alternatives; be able to fail and/or
generate surprises; use complete and
representative conditions.

Make chains of evidence clear; provide
descriptive statistics; avoid easy/common
errors in inferential statistics; ensure
conclusion validity; report manipulation
checks; use multiple, rich measures.

Describe participants’ interaction;
speculate and provide data about “whys”;
compare with known mechanisms and
effects; give implications for researchers
and practitioners; tie to hypotheses if
possible; justify key decisions.

Explore alternative hypotheses; work
against confirmation bias; discuss
multiple interpretations of data.

Discuss limitations; explain what could
have been done differently (and how);
discuss future research.

Be ethical; don’t waste people’s time; aim
for experimental realism; motivate
participants; give a debriefing; allow
participants to opt out at all times.

Have a fallback plan; do not attempt all
in one experiment; borrow and imitate
excellent experiments; be creative in
operationalizing variables; manage
variability in performance; do pilot
studies; share methods and results.
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Designing Experiments

The design of experiments refers to the selection of the key components
of an experiment (see Figure 1.1), and their organization into an exper-
imental situation that participants experience and act in. Next we go
through those components in turn.

4.1 Hypotheses and Theory

The role of hypothesis and theory in designing and running experiments
is controversial. Here we discuss research hypotheses, which conjecture
a relation between two or more variables. Some writers find it impor-
tant even crucial to form opinions about the outcome of an experiment
before running it. These opinions may be more or less detailed, but
should be testable and justified, for instance by appeal to earlier work,
relevant theories, or predictive models. Other writers find hypotheses
less useful. They maintain that though a final written up version of an
experiment may well include hypotheses, some research questions are
exploratory and that an emphasis on hypotheses may bias our think-
ing. Sometimes, these two views are contrasted as “testing theory” and
“hunting phenomena” [42], or as experiments that require theory by
definition because they test it and experiments that may or may not
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14  Designing Experiments

involve theory [142]. Deciding between these two forms is difficult, and
requires that an experimenter compare the benefits and drawbacks dis-
cussed next.

We see a number of benefits of hypotheses. First, they help gain
clarity about what one is doing and may help focus a research ques-
tion. To do so, hypotheses must be (a) testable, (b) concise, and (c)
name key constructs. For example, Nass et al. [104] hypothesized that
“subjects will perceive a computer with dominant characteristics as
being dominant” (p. 288). Gutwin and Greenberg [56] held the hypoth-
esis that “better support for workspace awareness can improve the
usability of these shared computational workspaces” (p. 511). The first
example is testable because one may compare computers with and
without dominant characteristics and expect a significant difference
in participants’ perception of dominance. That example names the key
construct dominant, both as something that may be manipulated in
computer interfaces (an independent variable) and as something that
participants perceive (a dependent variable, assessed for instance by a
questionnaire).

Second, formulating hypotheses helps a researcher think through
what earlier work says about the experiment being designed. Thereby,
hypotheses help summarize earlier work and use that work in moti-
vating and designing the experiment. One way of doing so would be
to use earlier theories to predict likely changes in dependent variables;
another would be to use empirical findings to motivate hypotheses. In
a paper on why people find it annoying to overhear conversations on
mobile phones, Monk et al. [99] separated three explanations of the
annoyance. They thought that people may be annoyed because (a) of
louder noises, for instance, by ring tones and people speaking louder
than in face-to-face conversations, (b) mobile phone conversations are
more recently invented than face-to-face conversations, or (c¢) only half
of the conversation is heard. Each explanation was motivated by earlier
work and later discussed in light of the experimental data.

Third, hypotheses help report an experiment. An analogy may
be made to the classic argument by Parnas and Clements [115] on
how and why to fake a rational software design process. Parnas and
Clements argued that even though we cannot do software development
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by rational deduction of software design from requirements, we might
benefit from faking the process, that is, from doing the documentation
that would have been made in a rational process. Amnalogously,
hypothesis may be useful for presenting experiments as if they had
driven an experiment. For a reader of the report on an experiment
such hypotheses provide structure and make it conform to the usual
way of reporting experiments. Note, however, that if hypotheses are
created after the fact one should not write a study up to generate the
contrary impression [83]. That would make it impossible for readers
to distinguish planned comparisons from accidental findings. For
clarity of thought, we want to avoid this because it conflates difficult
and potentially daring predictions from ad-hoc findings; for proper
statistics, we want to avoid this because it increases the chance of
reporting spurious findings as significant.

Fourth, hypotheses are tied to theory. Platt [117] presented what he
called the Question, which any experimenter should be able to answer.
It asks “But sir, what theory does your data disconfirm” (p. 352). The
best time for a researcher to think though the Question is of course
prior to running an experiment. In HCI, many theories may inform
generation of hypotheses. Sears and Shneiderman [125] created pre-
dictive models of split menu performance prior to running a formal
experiment. Nass et al. [104] used an extensive theory of how people
communicate to motivate their study and derive several hypotheses.
This is related to the earlier discussion of the “no surprises” objection
to experiments.

Unfortunately, formulating hypotheses has several drawbacks. In
psychology, Greenwald [52] argued that too often the null hypothesis
of an experiment is formulated only to be disconfirmed. He suggested
to design experiments where failing to reject the null hypothesis would
also be a valuable outcome. Another way around this issue is to
formulate alternative hypotheses, each supported by particular earlier
findings or theory [117]. Thus, the experiment becomes an attempt
to disconfirm one or the other equally plausible hypotheses. These
concerns illustrate the need to be wrong occasionally and to learn
something from being wrong. A related, older idea is that of Cham-
berlain [22], who spoke about multiple working hypotheses. His idea
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was for experimenters to come up with multiple hypotheses to avoid
becoming too attached to one hypothesis and thereby run the risk of
overlooking evidence against that hypothesis. The recommendation for
HCI experiments is to do strong comparisons that may fail, and where
failure will teach us something valuable (see Table 3.1). As mentioned
earlier, I believe too many experiments in HCI cannot fail or —
equivalently — that their results are given a priori. Across different
scientific disciplines, an increasing number of papers confirm their
hypotheses [36]. Thus, negative results (i.e., failures to find differences
or replicate earlier findings) seem to be less and less frequently
published. For authors, this trend might inspire more daring studies;
for reviewers and editors, it might inspire more lenience for papers
with negative results, if these are designed as strong comparisons.

A strong argument against the reliance on theory is that it may blind
us to interesting findings. Greenwald et al. [52] argued that researchers
who depend heavily on theory are more likely to revise experiments
(e.g., change procedures, predictions, or analysis of data) if finding dis-
confirming evidence rather than to revise theory. They presented exam-
ples of how such confirmation bias obstruct progress in research. Garst
and colleagues [43] presented data that participants who were given
a hypothesis about differently sized letters placed in various positions
on a card generated fewer, simpler alternative hypotheses than partic-
ipants who were not given any hypothesis. Holding a hypothesis may
blind us to interesting findings; the recommendation for analysis from
Table 3.1 is to bring an open mind to analysis or use multiple theories
to analyze data.

In sum, the view here is that not all experiments need hypotheses
or theories (and in some cases it is not feasible to create hypotheses
or impossible to find theories to draw on). But all experiments may
benefit from thinking through whether hypotheses may be formed and
which theories or models that can help us think about the relationship
between the independent variable and the dependent variable before
actually running an experiment. In my opinion this is done too rarely,
in particular for experiments where much control is exercised over the
experimental situation and where studying the context of use or rich-
ness of behavior are not contributions.
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4.2 Independent Variables

Given a research question and some hypotheses for an experiment, it
might seem easy to design the conditions that participants will expe-
rience, that is, the levels of the independent variables. It is not. One
concern in choosing levels of the independent variables (or conditions) is
to ensure that they match the key ideas (or constructs) of the research
question. The process that determines the specific make up of inde-
pendent variables is called operationalization, and the extent to which
that process creates conditions that reflect well the constructs of the
hypotheses and research questions is called construct validity (e.g.,
[127]). Here conditions are about the substantive domain or content
(e.g., an actual user interface), and constructs are about the conceptual
domain or ideas (e.g., an interaction paradigm); McGrath [96] further
elaborates this distinction. Figure 4.1 illustrates this process and the
four questions that we discuss next.

The conditions must be complete and representative instances of
the constructs being studied. Say a group of researchers wants to
understand the relative effectiveness of four techniques for animating
transitions (as did Dragicevic et al. [32]). If they study slow-in/slow-out
animation, the operationalization of that technique should include
all essential characteristics of slow-in/slow-out animation. Dragicevic

Control New

Constructs

Conditions /

Strong baseline?  Effects of non-essential choices
in operationalization?

R Complete and
Co(mpara b)le. / representative?

Fig. 4.1 Four questions to guide finding good independent variables. Operationalization is
about turning constructs (e.g., a control and a new user interface, represented as a circle and
a square) into conditions (shown as rounded rectangles that contain reflections of constructs
in addition to other issues).
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et al. [32] argued this representativeness by explaining how many com-
mercial and research interfaces use slow-in/slow-out animation and
presented an operationalization supposed to be typical of those inter-
faces. Experimenters may use focused research questions to argue com-
pleteness; earlier work may help argue why a particular condition is
representative of the more general construct.

Unfortunately, most operationalizations of a construct are
incomplete or biased. Shadish et al. [127] suggested that so-called
mono-operation bias poses a serious threat to construct validity. Mono-
operation bias occurs whenever an experiment uses just one oper-
ationalization of a construct. Such a single operationalization may
underrepresent the theoretical construct as well as introduce factors in
the experiment that are not central to the construct. The recommenda-
tion here is to study more than two levels of an independent variable:
using alternative operationalizations of the construct may increase the
validity of our concluding at the general, construct level. Also, multiple
operationalizations may help move beyond the win—lose setup of many
experiments. A practical argument for using several levels is that even
if a level of the independent variable (say, a new interface paradigm)
does not lead to any difference (say, over a control interface), it is still
possible as a fallback plan to generate interesting data about the dif-
ferences between the instances of the construct. In a sense this advice
follows from the earlier discussion of Greenwald et al. [52] and of Cham-
berlain [22]. As an example, Paek et al. [113] used three versions of an
experimental information retrieval system (and a unmodified baseline)
to identify the dynamic layout technique that worked the best for pre-
senting web search results; many experimenters in their place would
have chosen only to study one version and the baseline.

Experimenters often hypothesize that Ul constructs improve state-
of-the-art or older Ul constructs, acting as control or baseline. The aim
is to be complete and representative, but also to ensure strong baselines.
Munzner [103] discussed what she termed “Straw Man Comparisons”,
cases where authors compared their interfaces against outdated work,
rather than the state-of-the-art approaches. In comparing graph layout
algorithms, for instance, authors might compare against naive spring
algorithms, rather than newer and better approaches. Though Munzner



4.2 Independent Variables 19

wrote about information visualization, her notion applies to HCI in gen-
eral. In studies on usability evaluation methods, for instance, Hornbaek
[68] argued that many studies that compare usability evaluation meth-
ods employ a win—lose setup, where a novel method is compared with
a dated or inferior baseline. Landauer [86] argued that comparisons
with prior computer and non-computer methods are of “paramount
importance” (p. 209). The work on SuperBook [35], an experimental
hypertext browser, provides an excellent example of comparisons with
strong baselines. In particular, SuperBook was compared with a print
version that contained the same textual information.

In turning a construct into actual conditions, researchers often want
to add UI features or functionality that are not relevant to the research
question, but useful or necessary for the tasks or activities to be done.
The question here is about whether non-essential choices in operational-
ization bias or otherwise affect the main comparison of interest. A vari-
ant of this problem specific to HCI concerns the difference between
tools and techniques, or between what may be called “whole package”
and “essential features”. One way to proceed with experiments is to
compare entire tools for working in a particular domain or support-
ing a particular activity. An interface provided to participants would
contain both features that are being varied (say, a search presenta-
tion technique) and features that are not varied but expected in real
interfaces (say, whether or not search requests are being spell-checked).
If the latter features were included, participants’ experience would be
close to what would be provided in realistic use. The “whole package”
approach was used by Egan et al. [35] in their work on SuperBook,
which combined search, table of contents, and annotations. Another
way to proceed with experiments is to isolate the features of interest
and ignore or leave out other types of feature that would be expected
in a realistic tool (as done in the paper by Dragicevic et al. mentioned
earlier [32]). The strength of this way is to isolate the main variables
of interest and to minimize variation due to other features of the tool.
Similar considerations apply to experiments whose independent vari-
ables are not interfaces.

Figure 4.1 suggests another key question, namely whether levels of
the independent variable (say, two versions of an interface) are similar
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(or comparable) in all respects except those one is interested in manip-
ulating and concluding about. If they are dissimilar (or confounded),
any effects on the dependent variables cannot be attributed to what
we would like them to be attributed to, namely levels of the indepen-
dent variable. Whereas this question concerns the operationalization
of constructs, some writers (e.g., [127]) use the term internal validity
rather than construct validity. In experiments on HCI that compare
interfaces, typical questions about operationalization of independent
variables include (assuming, of course, that these concerns are not part
of the research questions or hypotheses):

Is the functionality equivalent?

Is the setting similar?

Is comparable information available in the interfaces?

Are the size and structure of the interfaces similar?

Are comparable hardware used (e.g., for input and output)?

Is training with the interfaces comparable in complexity and

duration?

e Are the instructions for operating the interfaces similar in
scope and complexity?

® Are the allotted time and criteria for success similar across
interfaces?

e [s the starting point identical for participants who receive

different treatments?

The literature contains many examples of choices of conditions that
were unsuccessful, in the sense of leading to comparisons that did not
allow for the conclusions intended. Lam and Munzner [85] gave exam-
ples from information visualization, where conditions being experimen-
tally compared differed in their support for displaying the same amount
of data, in how information was visualized, in their ability to show com-
parable level of details, and in having markedly different complexity of
interaction. In all cases, the authors did not intend to study these dif-
ferences, but introduced them by insufficient care in their experimental
design. Gray and Salzman [49] showed how comparisons of evaluation
methods were deeply flawed, as judged from a catalogue of concerns
about validity. For instance, one problem pointed out by Gray and Salz-
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man [49] was that some studies of usability evaluation methods had
specific groups of users apply a particular method. Usability experts
would do a heuristic evaluation and their performance be compared
with undergraduates who did a keystroke-level model (KLM) evalua-
tion. With such a design, effects of evaluation method and evaluator
background are confounded, rendering strong conclusions impossible.
In another instance, researchers had allowed evaluators much longer
time to apply one method compared to the time allotted to evaluators
using another method. In that case, strong conclusions about differ-
ences in evaluation methods were impossible, because they were con-
founded with time. Other research questions or domains typically raise
additional questions about comparability.

Unfortunately, making conditions comparable is hard. In one study,
we were comparing interfaces for reading text on computers [69]. One
such interface offered both an overview of the entire document and
a detailed view of the text (a so-called overview-+detail interface).
Another interface offered a baseline approach to presenting the text
(a so-called linear interface), similar to how text is presented in most
word processors, document readers, and web browsers. It was hard to
make the overview+detail interface differ from the linear interface only
with respect to the overview. On the one hand, the layout of the text —
in particular the line length — should be similar, because layout greatly
influences reading time and reading processes. On the other hand, the
screen real estate should be similar, because the comparison otherwise
might just show that more space is better. This might lead to the
surprises” objection mentioned earlier [37].

Another recommendation is to do manipulation checks. A manipu-

“no

lation check attempts to gauge whether the independent variable works
as intended. For instance, one may test if participants understand and
use a new Ul feature as intended by the experimenter. Jeffries et al. [76]
described what turned out to be an important manipulation check.
They were studying usability evaluation methods and asked partici-
pants to report how they identified usability problems. Surprisingly,
participants reported finding problems both by prior experience and
as “side effects” of using a technique (e.g., noticing one type of prob-
lem while following the method to look for another type of problem).
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Later papers have used this observation to argue that what is going
on in the use of usability evaluation methods is not only (or mainly)
method application (e.g., [68]). Even though Jeffries et al. did not name
this a manipulation check, their data suggested that the manipulation
of the independent variable (evaluation method) was not working as
expected. Recently, my colleagues and I [40] investigated perceptions
of usability across cultures. We sampled Danish and Chinese respon-
dents and claimed they were representative of two different cultures.
Although we knew their national background, upbringing, and so on,
we did not test this difference using one of the many available ques-
tionnaires on cultural differences. Having done so would provide a clear
manipulation check of culture. In sum, manipulation checks give a post-
facto way of ascertaining and understanding how independent variables
work in the experimental situation, in a sense providing evidence that
the manipulation works.

In many experiments there is a desire to manipulate more than one
independent variable. We deal with one such independent variable, task,
in a subsequent section. Here just a few remarks on multi-factor exper-
iments. Many interesting phenomena in HCI depend on interactions
among variables, as already discussed by [86]. For instance, task com-
plexity may interact with interface, meaning that one interface works
well for complex tasks whereas another works well for simple tasks. To
detect such a pattern, one needs multiple factors in a single experiment
(or several experiments). Unfortunately, including multiple factors in
an experiment comes at an expense. They complicate the structuring
of experiments as well as their analysis. The latter point, in particular,
makes presenting results in a manner that is clear and understandable
hard. Thus, my thinking is mostly to simplify the design, reducing the
number of independent variables to two or three, and investigate other
variables of interest in separate experiments.

Finally, selecting and operationalizing independent variables is also
about being creative. Many important experiments in HCI are based on
ingenious ideas or operationalizations of independent variables. Gould
et al. [48] wanted to study real-time use of speech-processing software,
but no such software existed. Thus, they faked the software by having
a person listen to the input to the software and transcribe it (using
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a Wizard of Oz approach). Cockburn and McKenzie [25] compared
2D and 3D user interfaces for web pages and created a physical 3D
interface using photos of webpages that were suspended from a system
of fishing-lines. Monk et al. [99] wanted to understand reactions to
mobile phone use, in particular the reaction to being able to hear only
one part of a conversation. They had actors play out different scripts to
be able to combine the field setting with relatively uniform situations
to participants.

4.3 Structuring Experiments

Structuring experiments implies designing how participants will be sub-
jected to the levels of the independent variables and the tasks. The
aim is to ensure internal validity, that is, the ability of an experiment
to attribute differences observed in the dependent variables to manip-
ulations of independent variables [127]. Another way to think about
internal validity is to consider whether any differences in the depen-
dent variable would be present without variation in the independent
variable. A frequent example of such a validity concern is maturation
[127], that is, changes in participants’ performance over time. A study
might be invalid in this sense by presenting participants with the control
interface first and a novel interface second. We might see a difference
between interfaces even without the novel interface because partici-
pants mature, for instance, by gaining experience. Put another way,
the main concern in structuring experiments is to rule out by design
alternative hypotheses to the one you are testing.

A key tenet of classic thinking about experiments is the use of
randomization (e.g., [42]). The idea is to assign participants at ran-
dom to levels of the independent variables. That way, factors that are
not of interest to the experimenter are evened out between conditions,
improving the experiment’s internal validity. In practice, randomization
is often done by rolling dice, consulting a list of random numbers, or
using a random number function. This is to avoid the many misfortunes
described in the literature where what seemed to be random procedures
for assignment was found to show systematic biases. Randomization
has the big advantage that it is easy to do and that it deals also with
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factors that influence the experiment, but are unknown. An alterna-
tive to randomization is blocking. The idea here is divide the experi-
ment into blocks that are similar, for instance so that a block contains
two versions of a user interface. We may then repeat blocks and get a
more even spread of the variation due to user interfaces compared to
a non-blocking design. Cockburn and colleagues [24] used both these
approaches to structure an experiment for investigating menu naviga-
tion. They were interested in modeling menu navigation but needed to
estimate a set of parameters for the model. Among other things they
varied the type of menu (three levels) and the length of menus (four
levels). The experiment used all three types of menu, in an order deter-
mined at random. That way, the levels of the menus are likely to be
evenly distributed among the first part and the last part of the experi-
ment. The length of menus was blocked, so that participants did three
or seven blocks of menu selections, where each block contained selec-
tions of all items in the menu (determined by its length). That way,
Cockburn and colleagues ensured that selections in the various parts
of the menu were evenly spread over the course of the experiment.

A key distinction in assigning participants to interfaces, task, and
levels of other independent variables is between between-subjects and
within-subjects designs. In a between-subjects design, each participant
experience only one level of the relevant variable, say, one of the inter-
faces being investigated; in a within-subject design, each subject experi-
ences all levels of the variable. Both are used in HCI, but within-subject
experiments appear to be the most frequent. For instance, in a sample
of 73 studies, 60% used a within-subjects design and 32% a between-
subjects design; the remainder used a mixed approach [70].

Between-subject experiments offer benefits. First, they are simple
to describe, simple for participants, and simple to analyze statistically.
Second, they are the only option for some experiments. For instance,
many learning effects can only be studied between-subjects and some
experiments employing deception cannot be done within-subjects. The
study by Nass et al. [104] on the perception of computer personalities
mentioned earlier used a between-subjects design. The reason for this
design was likely that (a) analysis would be simplified, (b) participants
would not become aware of the purpose of the experiment, which they



4.3 Structuring Experiments 25

might if they had seen two interfaces that differed only in style of com-
munication, and (c¢) that only one task needed to be developed because
each participant only used one interface to do one task. Had a within-
subjects design been used, Nass et al. would have had to construct
several tasks that were equivalent, yet not so similar that having done
one would change how participants did the next.

Within-subject designs also offer several benefits. First, they offer
statistical advantages. Because participants are subjected to more than
one level of the relevant variable, the variability of the estimates of
that variable will typically be more precise (though not always, see
Keren [82]). More precise estimates lead to higher power, the abil-
ity of an experiment to detect differences between conditions. Second,
within-subject experiments offer practical advantages. Because partic-
ipants can use several interfaces (or whatever is being manipulated),
fewer participants are needed for the experiment (but sessions may
end up being longer). Within-subject designs face several methodolog-
ical issues; Greenwald [51] summarized three of particular importance.
Practice is an issue because participants may learn from being exposed
to several instances of an interface or task and thereby gain proficiency.
In some experiments, practice is of importance; in others, it may be
undesirable. Greenwald also discussed sensitization, which concerns the
possibility of participants figuring out the purpose of an experiment.
When seeing variations of the treatments, it is much easier for partici-
pants to form opinions about the differences among treatments. Finally,
carry-over effects are about the influence one treatment may have on
subsequent treatments that a participant experience. For instance, one
may see asymmetrical transfer between conditions, meaning that user
interface 1 influences user interface 2 more than user interface 2 influ-
ences user interface 1.

Several tactics and standard practices help experimenters stay clear
of some concerns about internal validity. The act of counterbalancing
helps remove many potential confounds resulting from the ordering
of the levels of independent variables. Latin squares and Greco—Latin
squares offer general solutions for distributing the effect of order and
combination of two or more independent variables. The number of
papers that have been rejected because one or more of these tactics
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Fig. 4.2 Counterbalancing with Latin and Greco-Latin Squares. Panel A shows a within-
subjects design for three user interfaces (uil—ui3), each used in a sequence of sessions (ses-
sion 1-session 3) by participants (user 1-user 3). Panel B shows a Greco—Latin Square that
crosses user interfaces with tasks (t1-t3). Panel C shows a 4 = 4 Latin square, for a situation
with four user interfaces (or four other levels of an independent variable). That square is
balanced for first-order effects in that each user interface is followed in the next session by
any other user interface the same number of times.

were not followed is large. Figure 4.2 shows some examples of Latin
and Greco-Latin Squares. Most statistics programs can produce such
squares (e.g., SPSS, R).

4.4 Participants

Arguably the most important question in selecting participants for an
experiment is who should participate. Hornbaek and Law [70] found that
in a sample of 73 HCI experiments, half were conducted with partic-
ipants that had much experience with the task to be performed and
about a third were done with participants with no experience. The
key issue here is whether or not participants bring expertise, insights,
aspirations, expectations, or specific work competencies to the exper-
iment that is important. Campbell [18] expressed this in a negative
manner by asking whether “the specific work experiences of the sub-
jects influence the phenomena being studied in such a way that they
confound the results of the study” (p. 276). Positively put, selecting
participants is about finding people with the characteristics neces-
sary to address the research question. Key factors to think through
include domain experience, IT experience (e.g., in general or with an
interface being tested), personal characteristics (e.g., gender), abilities
(e.g., in thinking, perception), attitudes, and motivation (e.g., financial,
intrinsic).



4.4 Participants 27

The question of whether students may validly be participants in
experiments recurs. Barkhuus and Rode [10] found that about half of
a sample of studies from the ACM CHI conference used students as
participants; Sjeberg et al. [131] found that 81% of a sample of 113
articles on software engineering used students. On the one hand it is
well known that college students differ from other potential groups of
participants: They have stronger cognitive skills, have developed less
strong attitudes, and are more likely to follow authority [126]; most are
also shaped by living in western, industrialized, and democratic soci-
eties [62]. On the other hand, in the context of organizational psychol-
ogy Campbell [18] lamented that “In spite of the gaps in the research
record mentioned earlier, the message is clear: the data do not support
the belief that lab studies produce different results than field studies.
Perhaps college students really are people” (p. 276). Thus, in itself hav-
ing students participate in an experiment may not matter to a study;
conversely, using experts in a particular domain may not matter for
some tasks. One may think the same way about several other sys-
tematic methods for choosing participants. Volunteer participants, for
instance, show many differences to the general population in tending
to be more well-educated, more intelligent, of higher social class, more
arousal seeking, and more approval motivated [120]. The differences
between the general population and those who are willing to com-
plete tasks for micro payments (e.g., on Amazon Mechanical Turk)
are just beginning to be understood (e.g., [114]). In all cases, what
matters is to think through what characteristics of participants that
matter.

The selection of participants is often guided by a wish to general-
ize any effects of the independent variable to other persons; Shadish
et al. [127] referred to this as an instance of external validity. The key
question is to understand if characteristics of participants may influ-
ence the size or direction of effects, when one is considering broader or
more focused groups of users. When designing experiments, one should
think about whether the selection of participants affects generaliza-
tion: Will conclusions hold also for the general population, the average
user, the expert user, prospective users, or any other group that the
experimenter would like to conclude about?
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An often-pondered question is how many participants to use. A cou-
ple of answers may be given. The technical answer is that power anal-
ysis [26, 27] may be used to estimate the probability that one detects
a difference in a dependent variable between levels of the indepen-
dent variable if one knows (or can qualify a guess about) the mag-
nitude of the effect one is looking for. Power analyses are depressing
reading. Typically many participants are required to achieve a reason-
able power (say, an 80% probability of finding a difference). To detect
medium-sized differences between two conditions at this probability,
one would need 64 participants in each condition in a between-subjects
experiment. Medium-sized effects found in the HCI literature include
differences between broad and deep menus or between selecting with
mouse and keyboards.! Fortunately, many studies can obtain repeated
measures and use within-subjects designs, both of which reduce the
number of participants needed. In the example above we may obtain
10 repeated measures in which case one would need only 25 partici-
pants per group (assuming that observations are correlated at r = 0.3,
the case for instance in Jakobsen and Hornbeek [73]). With that num-
ber of repeated measures, a within-subjects experiment would require
about 20 participants in total. Most statistics packages can assist with
power analysis, as can the free tool G*Power (Faul et al., 2009).

The pragmatic answer to the question about how many participants
to use is that HCI studies typically employ 20 participants (medians
from [10, 70]); substantial variations of course exist among experiments
with different purpose and in different application areas. Incidentally,
in a critical review of psychology experiments, Simmons et al. [130]
also recommended 20 persons per condition because “samples smaller
than 20 per cell are simply not powerful enough to detect most effects,
and so there is usually no good reason to decide in advance to collect
such a small number of observations.” (p. 5). Note that the technical

I These effects differ between studies. For instance, Larson and Czerwinski [88] found a
medium effect size (Cohen’s d = 0.47) between their slowest (a deep menu) and fastest (a
broad menu) conditions. Card et al. [20] studied pointing to a word on a page of text and
found a medium-sized difference between mouse and step keys (a step key may be used
to navigate a word, sentence, or paragraph, d = 0.48), and a medium to large difference
between mouse and text keys (similar to arrow keys, d = 0.70).
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and pragmatic answers above are unrelated to recommendations on how
many users to use in a usability test (e.g., [71]). These recommendations
are about formative evaluation, not about the summative evaluations
that are the focus of this monograph.

4.5 Tasks and Activities

Most experiments in HCI have participants engage in some form of
structured activity, typically referred to as tasks. A key characteris-
tic of experiments is that these tasks are not initiated or motivated
by participants themselves, but take place because of the experiment
[42, 96]. Some studies that concern open-ended or non-work-related
activity often refrain from using the word task; these studies still have
to create a meaningful experimental situation and to instruct partici-
pants what to do, meaning that they face many of the same concerns
as studies that use tasks. Our use of the word task below also covers
such cases. Note that many experiments include several tasks and treat
these as an additional independent variable when structuring experi-
ments and when reporting them. Many of the concerns listed in the pre-
vious section (e.g., completeness, representativeness, and non-essential
features) also apply to thinking about tasks and activities.

One may select tasks in many ways. One is to select tasks that
are representative of what users would do outside of the experiment.
Munzner [103] discussed selection of tasks in information visualization
and wrote “A study is not very interesting if it shows a nice result for a
task that nobody will ever actually do, or a task much less common or
important than some other task. You need to convince the reader that
your tasks are a reasonable abstraction of the real-world tasks done
by your target users” (p. 147). One way of ensuring representative-
ness is to use tasks that users have been observed doing. Meister [9§]
recommended that evaluation proceed from domain studies of actual
task attempts. Another way of ensuring representativeness is to pro-
ceed from taxonomies of tasks or other syntheses of tasks that users
do or want to do. A third way is to only prescribe activities loosely
and then later on figure out what was actually done (e.g., [111]). For
instance, one may leave parts of the task to be filled in by partici-
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pants: This gives more realistic and interesting tasks, at the cost of
higher variability. Gutwin and Greenberg [56] selected tasks for evalu-
ating awareness-support in a groupware system, aiming to find repre-
sentative tasks. They wrote: “Tasks were designed to mimic episodes
and activities that we observed in face-to-face collaboration” and that
“we wanted realistic tasks that were likely to occur in a wide variety
of workspace activities” (p. 512). From these desiderata Gutwin and
Greenberg developed and used three tasks in their experiment.

Another approach to selecting tasks is to use simple tasks that cap-
ture the essence of what is being investigated. The idea is to reduce
variation and remove non-essential features of a task; this idea is simi-
lar to the approach for selecting independent variables that was earlier
referred to as essential features. For instance, many studies of pointing
techniques use the ISO multidirectional tapping task [133]. This task
requires participants to tap circular or square targets arranged in a cir-
cle. It does not represent pointing in the wild, but is widely accepted as
a useful task for experiments. Dragicevic et al. [32, p. 2012] explained
the reasoning in adopting a simple task for a study of animation as
follows:

This is an elementary low-level task, ensuring that if
users are unable to perform it, then more complex
tasks — e.g., following multiple independent objects or
groups of objects — will be equally or more difficult.
It is also safe to assume that many higher-level tasks
will be difficult to perform if single objects cannot be
tracked.

A third approach uses task-specific hypotheses. Tasks in HCI often
lead to significant differences in performance, outmatching even indi-
vidual differences. Therefore, this approach selects tasks for which
experimenters have specific expectations or hypotheses. For instance,
Alonso et al. [5] created 31 tasks for a comparison of Lifelines — a
visualization of time-related medical data — to a control interface. For
each task, Alonso et al. presented a hypothesis for or against Lifelines
or the control interface. Task-specific hypotheses is related to the idea



4.5 Tasks and Activities 31

of boundary variable discussed by Fromkin and Streufert [42]. Their
idea was that experimenters can identify factors that can change a
relation between independent and dependent variables, giving a richer
understanding of the phenomena under study compared with merely
investigating if a particular relation exists. Tasks may be such a vari-
able and task-specific hypotheses may help characterize the boundaries
of a specific effect.

Deciding between these approaches is hard. On the one hand, repre-
sentative tasks may contain irrelevant elements and may lead to greater
variation in performance; hypotheses may also concern only a part of
such tasks. On the other hand, using simple tasks requires an argu-
mentation for why they are relevant for real work (for instance like
the one by Dragicevic et al. quoted above). One critique of experi-
ments in HCI is that they use too simple tasks. Among a sample of
73 empirical studies in HCI, Hornbaek and Law [70] showed how tasks
were mainly low complexity (say, perceptual or motor tasks) and only
infrequently of high complexity, for instance requiring participants to
problem-solve (19% of the studies). Whereas some research questions
are inherently about low complexity tasks, I think that probably more
studies could use representative tasks. Using task-specific hypotheses
seems the least frequent approach of the three discussed here, but it is
powerful for scoping known effects and for understanding better why
and when something happens (because variation in tasks can provide
data about why and when).

When selecting tasks, there is ample opportunity to build on the
works of others. Whittaker et al. [140] argued that HCI overempha-
size radical invention, that is, novel and bleeding-edge technologies for
rare or somewhat contrived problems. They suggested that this empha-
sis lead to a lack of comparability across studies, and to studies that
re-invent tasks. Thereby, “researchers can end up proposing radical
solutions to things that users do not consider major problems and can
neglect major problems that users do experience” (p. 79). Whittaker
et al. proposed a reference task agenda for HCI. Although such an
agenda is infrequently pursued on a large scale, standardized tasks or
taxonomies of task are available in information retrieval (e.g., text
retrieval conference, TREC), information visualization (e.g., Visual
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Analytics Science and Technology Challenges), input studies (e.g.,
[133]), and many more areas. Yet, the tasks people do change over
time, and often technologies and tasks are intertwined (so that new
tasks emerge with new technologies). So it is not realistic to expect
reference tasks available for all experiments.

Finally, participants’ understanding of tasks and their involvement
in the experimental situation are important to all studies. If partici-
pants do not understand the task, their performance is likely to vary
a lot and to be of little value to the experimenter. Some researchers
maintain that understanding tasks implies being aware of the criteria
for evaluating performance. In many studies on pointing, for instance,
this has lead to researchers to instruct participants to “work as fast
as possible while still maintaining high accuracy” [31, p. 217]. Others
maintain that experimental realism — the extent to which participants
experience the experiment as meaningful and involving — is key to
useful insights. Experimenters can try to achieve the above by pilot
testing, careful debriefings that elicit participants’ view of the experi-
ments, clear instructions, and intrinsically motivating tasks.

4.6 Setting

The setting in which experiments take place requires some comments;
in part because setting is an important issue to experimenters, in part
because setting is much debated both in HCI (e.g., [84]) and outside
(e.g., [6, 45]). One consideration for setting is whether experiments
take place in the lab or in the field. In lab experiments, the setting
is controlled and the effect of external influences minimized. In field
experiments, the setting is real, although the experimental manipula-
tions are instigated by the experimenter. The view taken here is that
neither choice of setting is better than the other; rather, they have
relative benefits and drawbacks.

On the one hand, the lab setting offers great potential for restrict-
ing the influence of extraneous variables and for collecting fine-grained
data. It is likely to reduce variability in performance and hence to
increase power. On the other hand, the field setting is attractive. It
allows us to discover phenomena that were not anticipated and to study
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activities too complex to bring into the laboratory. Oulasvirta [111] sur-
veyed the practical challenges of field experiments well, including how
to gather better data, test predictions in the field (rather than just
hunt phenomena), and how to study the effects of the environment on
interaction.

Sometimes a lab setting may be relaxed. Meister [98] suggested that
experiments could “introduce into the experiment, to the extent possi-
ble, conditions that are representative of the operational environment”;
Landauer [86] similarly talked about robustness over variation, where
the setting provides one important source of variation. The attention
to setting sometimes turns into an obsession with mundane realism,
the physical similarity to the real setting, for instance with usability
labs and experimental settings constructed to resemble living rooms.
However, as argued by Berkowitz and Donnerstein [12] experimental
realism matters more than mundane realism.

The discussion of setting is sometimes confounded with the ques-
tion of method; some arguments against lab experiments slip into argu-
ments against experiments. My view is that these are separate issues,
as evidenced by many excellent field experiments in the literature (e.g.,
(64, 99]).

4.7 Dealing with Other Factors

In the case of extraneous variables (called other factors in Figure 1.1)
the strategies mentioned earlier (randomization, blocking) may also be
used. In addition, we may control factors, meaning that we require a
set level of expertise or allow only a certain gender to participate or
conduct all our experiments in the same room. Matching is similar to
blocking in its approach to dealing with other factors. It means that the
experimenter matches participants in different conditions on some fac-
tor. For instance, participants may be matched on gender so that when-
ever a female is assigned to one condition, a female is also assigned to
the other condition or whenever participants with high mental rotation
skills are assigned to one interface, a participant with low such skills
are assigned to the other interface. It is also possible to measure factors
that are of interest and subsequently use those measures to statistically
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adjust the effect. This is done by removing the effects of variation in a
variable statistically after running the experiment [96]. The idea is to
obtain some measure of the factors (say, dexterity, visualization abil-
ity, or screen resolution) and include them in statistical analysis, using
for instance analysis of covariation. Burnett et al. investigated gender
differences in programming. In one experiment they had participants
with different levels of confidence in themselves (as measured by a val-
idated self-efficacy scale) use a new spreadsheet environment. Burnett
et al. used self-efficacy as a covariate in their analysis, allowing them
to conclude about the spreadsheet environment in ways not influenced
by initial self-efficacy scores.

4.8 Choosing Dependent Variables

The choice of dependent variables follows from the hypotheses of an
experiment. It will also, however, be shaped by the application domain,
interface technology, context of use, related work, and so forth. The
main concern in selecting dependent variables is about construct valid-
ity. Construct validity is in part about the extent to which the actual
measures collected reflect what the researcher intends to measure, or
about “making inferences from sampling particulars of a study to the
higher-order constructs they represent” [127, p. 65]. Thus, all obtained
measures or scores are typically involved in an act of reasoning where
they are taken as indicators of a general or theoretical concept: the
extent to which this act is justified concerns construct validity.

One may separate the two issues of conceptualization and opera-
tionalization [4, 127]. On the one hand we need to understand the con-
structs of interest. For instance, while learnability of a user interface is
(superficially) an easy-to-understand quality, defining it is much harder.
Grossman et al. [54] showed how the literature displays many different
understandings of learnability. If an experiment does not clearly concep-
tualize learnability the validity of any inferences from that experiment
may be reduced because learnability may mean many different things.
Similarly, task completion time is very easy to measure, but it may not
be the best conceptualizations of the qualities of an interface that an
experimenter seeks to establish. Studies vary in whether they see low
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task completion times as good (minimizing resource expenditure) or
bad (expressing a lack of engagement), see Ref. [67].

On the other hand we need to develop ways of actually measur-
ing outcomes of an experiment, operationalization. This is very hard.
Hornbaek [67] showed how researchers in HCI have devised a myriad
of questionnaires for measuring subjective satisfaction, many of which
have been shown unreliable or otherwise problematic in their opera-
tionalization [70]. Construct validity thus requires an experimenter to
carefully think over and define key constructs in addition to reason-
ing about whether actual measures and measurement procedures are
representative of those key constructs.

Measures of usability will form the dependent variables of many
experiments, in particularly those comparing user interfaces. One preva-
lent way of understanding usability is to see it as quality-in-use of an
interactive system, that is, “the user’s view of the quality of a system
containing software, and is measured in terms of the result of using
the software, rather than properties of the software itself” [13, p. 92].
Whereas dependent variables may be named differently (e.g., workload,
performance, user experience), the umbrella term usability is used below.

The research on usability raises important questions for exper-
imenters. It has been shown that wusability is multi-dimensional.
Early models distinguished five groups of measure [108, 128]: learn-
ability /time to learn, efficiency/speed of performance, memorabil-
ity /retention over time, errors, and subjective satisfaction. ISO 9241-11
[72] distinguished three types of measure: effectiveness (e.g., accuracy),
efficiency (e.g., time), and satisfaction. A related insight is that that
objective and subjective indicators of usability may differ empirically
and conceptually (e.g., [70, 124]). For instance, Hornbaek and Law [70]
found that users’ perception of outcomes did not correlate with actual
measured outcomes; Hassenzahl [59, p. 9] argued that subjective and
objective qualities are fundamentally different:

Experience is subjective. It emerges through situations,
objects, people, their interrelationships, and their
relationship to the experientor, but it is created and
remains in her or his head. Given that, it may be not
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matter how a product is objectively, its quality must
also be experienced to have impact.

One way to use these results is to assume that dimensions of the usabil-
ity construct are relatively independent and to collect measures on all
dimensions (see [41] for illustrations of this assumption at work).
Selection of usability measures may be inspired by catalogues of
usability measures [9, 44, 67, 137]. Table 4.1 contains a sample of often-
used measures. The main point here is to help experimenters reason
about potential measures, rather than to provide a cookbook for run-
ning experiments. Many of the instruments for collecting such measures
have been carefully developed and validated, a sure and important way
of using earlier work. Jarvenpaa et al. [75] suggested “in the short run,
modify and use, as much as possible, previously used and validated
instruments; develop your own only if absolutely necessary” (p. 152).
While such catalogues give inspiration, a few additional consid-
erations should be mentioned. First, studies in HCI could use richer
and more complex measures of outcome. Hornbaek [67] argued that
measures at the macro-level are too infrequently used in evaluations of
interaction with user interfaces; this was echoed in the earlier discus-
sion of complex tasks. Macro-level measures span hours or months, are
cognitively and socially complex, and are typically about effectiveness
or satisfaction (rather than efficiency). Complex measures were used in
one of the studies of SuperBook [35], where participants wrote essays
about features of the statistics system that SuperBook described.
These essays were subsequently graded by an expert in statistics and
by tallying the number of facts mentioned both in the essay and on
a master checklist. Second, composite dependent variables are in my
view much harder to interpret than non-composite ones. A composite
variable could be the F-measure used in information retrieval (which
integrates measures of precision and recall) or quality normalized by
time (typically obtained by dividing a measure of task quality measure
with task completion time). Such measures ease calculations and
analysis, but may bewilder readers and hide detail. Third, multiple
measures of the same construct increase reliability and strengthen the
validity of claims about constructs. Using just one operationalization of
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Table 4.1. Typical dependent variables in experiments in HCI (based on Refs. [9, 44, 67,

137)).

Construct Definition Example

Accuracy Errors in trying to complete a task  Proportion of corrects trials when
(e.g., task completion) or in the using a mouse to steer through a
task results (e.g., spatial accuracy). tunnel [2].

Completeness Amount or magnitude achieved in ~ How completely a design task was
task solution (e.g., on a secondary  covered [110].
task).

Outcome Assessments of the quality of the Expert grading of essays written by

quality outcome of interaction (e.g., by the use of SuperBook or a control
learning assessments, expert interface [35)
rating).

Time Time taken to complete parts or Time spent in various parts of a
the whole of a task. design task solved with and without

a shared text editor [110].

Effort Resources expended to complete a  Steps taken in navigating a
task (e.g., communication effort, hierarchy [88].
steps taken).

Learnability =~ Easy to learn to operate an Henze et al. [63] evaluated
interface (e.g., to a specific improvements of touch-type
criterion or for intermittent use). keyboards and measured learnability

as changes in error rate over time.

Preference Users’ preference among interfaces  The interface users chose for a final
(e.g., as indicated by rank task, after they have gained
ordering, rating, or implicit experience with a range of interfaces
preference). [64].

Workload Subjectively experienced effort Pirhonen et al. [116] measured
(e.g., as reported in questionnaires) workload while participants walked
or objective indicators of workload and used a mobile device; NASA’s
(e.g., pupil dilation). TLX was used [58].

Satisfaction ~ Assessment of users’ satisfaction Chin et al. [23] used QUIS to
with an interface (e.g., through compare liked and disliked products,
QUIS [23] or CSUQ [91]). as well as menu and command-like

interfaces.

Affect Assessment of users’ affect while Mahlke and Thiring [94] studied the
using an interface (e.g., with the perception of portable audio players
self-assessment mannequin, SAM using SAM, along with other
[87]). measures.

Appeal Users’ perception of beauty, Lavie and Tractinsky [89] used

appeal, and aesthetics in interfaces
or interactions (e.g., measured by
Visual Aesthetics of Website
Inventory [101]).

questionnaires to measure users’
perception of classical (e.g., beauty)
and expressive aesthetics (e.g.,
originality) in web pages.

(Continued)
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Table 4.1. (Continued)

Construct Definition Example
Fun Users’ experience of enjoyment Mueller et al. [102] used a
while using an interface. questionnaire to evaluate bonding
and fun in exertion-based
interfaces.
Hedonic The experience of non-task related Hassenzahl and Monk [61] studied
quality quality, such as novelty and the relation between beauty,
stimulation (e.g., as measured by usability, and hedonic quality on

the AttracDiff2 questionnaire [60]).  web sites, using AttrackDiff2.

a construct faces a mono-method threat to validity [127]. It means that
we are more prone to not measuring what we think we are measuring
if we use just one indicator for a construct. Thus, whenever possible,
use several operationalizations of key constructs. For instance, Olson
et al. [110] described how they developed a quality measure of designs
for an automated post service through extensive discussion among
researchers and designers; a rating form was constructed based on
three aspects of design. Fourth, a useful notion in thinking about
dependent variables is critical parameters [105]. A critical parameter
is a performance indicator that captures aspects of performance that
are critical to success, domain/application specific, and stable over
variations of interface. Part of the challenge in applying catalogues of
measures is to ensure that at least some measures chosen are critical
in the above sense (and not just generic time or error measures). Fifth
and finally, the strict definition of experiment proposed earlier means
that measures of usability will always be relative, say compared to
another interface or a base level, never absolute. Thereby one avoids
the temptation to infuse meaning into an absolute usability score such
as the average of numeric answers to a usability questionnaire. In
conclusion, we recommend using multiple, rich dependent measures.
Preferably, they should also have straightforward interpretations as to
their relation to quality-in-use.

While we have mostly discussed the validity of usability measures, a
word about reliability is also necessary. Reliability is about stability in
measurements, where a procedure for measuring is reliable if it produces
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similar results when applied to the same object. As an example, relia-
bility matters a lot for questionnaires. Hornbaek and Law [70] showed
how so-called homegrown questionnaires had lower reliability compared
to carefully developed and validated questionnaires. Again, the recom-
mendation is to use questionnaires developed in earlier work when-
ever possible. Reliability is also a concern when coding observations
or categorizing outcomes of the process of interaction. Reliability can-
not be assumed. Experiments that use dependent variables based on for
instance observation should carefully define criteria for coding and have
independent raters code the data and compare their coding (and report
a measure of interrater reliability, see [38]). Oulasvirta et al. [112] con-
tains an example of careful coding and reliability checking; their coding
manual is also publicly available.

4.9 Describing the Interaction Process

The measures described in the previous section concern mostly the out-
come of interaction; measures or descriptions of the process of inter-
action are also informative in much experimental work. One reason is
that such descriptions help interpret and give context to variation in the
dependent measures. A second reason is that they help speculate about
potential mechanisms involved in producing changes (or lack thereof)
in the dependent variables, the “why” of experiments. A third reason is
that the HCI field knows too little about interaction processes: describ-
ing them may help advance our understanding of interaction (see Yi
et al. [144] for an argument).

A widespread method for obtaining data that describe interaction is
logging. Logging is an umbrella term for instrumenting user interfaces
or environments to capture and store users’ interaction, including time
stamps and a means of relating interaction to the experiment’s other
variables. Typical data from logs include mouse movements/clicks,
command usage, virtual navigation, and errors. Homegrown interfaces
may write interaction events such as mouse movements and interface
actions to a file or database; existing interfaces may be instrumented
using software that captures keystrokes or mouse activity (e.g., Noldus’s
Observer, Techsmith’s Morae); pre-instrumented user interfaces may be
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used (e.g., web browsers that capture navigation activities such as [66]);
or logs may be established from other sources (e.g., using Web logs,
proxies). Lazar et al. [90] provided many additional examples of recent
tools for logging. Further details on how to do and analyze logging
are available in the literature (e.g., [65]). Independently of the specific
tools used, the main point is that logging is low-cost and allows for
detailed insights into interaction. Logging is just one of many ways to
gather data about interaction. Other ways include videotaping interac-
tion, capturing interaction by a screen recorder, tracking the movement
of people, eye tracking, or finding traces of activity. Detailing these is
out of the scope of the present work (see [90]).

Data on interaction may be summarized and analyzed using fre-
quencies, sums, aggregates, co-occurrences of commands, transitions
from one activity to another, detecting and comparing sequences of
events, and many other ways. In addition to standard techniques for
doing such analysis (e.g., [122]), approaches specific to HCI have been
developed (e.g., [123]). Automated analyses during data collection may
speed up things, but have to be planned in advance; subsequent explo-
ration of patterns of interest may easily be done if logged data are
placed in a database or otherwise readily available. To give one exam-
ple of analysis of logging, Hornbaek and Frgkjeer [69] used logs of mouse
movements to create maps of how participants read scientific papers on
a computer and to identify distinct phases of reading (i.e., for general
understanding and for finding a specific piece of information).

A few comments about descriptions of the process of interaction
are pertinent. First, it is worth iterating that while descriptions of
interaction processes may work as dependent variables, they are not
necessarily about quality in use. Hornbak [67] gave several examples
where this distinction was mixed up and authors concluded that one
interface was better than another based on descriptions of the inter-
action process. Such a conclusion typically needs a warrant to explain
why the description of the interaction process implies goodness or lack
thereof. Second, describing the process of interaction is often key to
unpacking and interpreting individual differences. They, in turn, are
large and often important to understanding performance data. Third,
capturing data on interaction is often unobtrusive, providing a number
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of benefits as experimental evidence [138]. In a study of an experimental
text viewer called TeSS [64], participants first used a variety of viewer
features and then — rather than being asked about their preference —
were simply given the choice of which viewer features to use for a final
task. This choice were logged and provided an interesting, behavior-
based indicator of preference. Fourth, the recommendation here is to
log as much as possible and delay the decision on what to analyze.
That tactic — in combination with current database capabilities —
allows for more exploration and idea generation from interaction data.
Remember, however, the earlier discussion of how to reason about and
report ad hoc findings (compared to planned comparisons). An example
of extensive logging is Henze et al. [63], who logged about 48 million
keystrokes in a mobile phone game, including the exact place users
tapped to produce the keystroke. They related these data to data col-
lected in an ad hoc manner from the application store used to distribute
the game (e.g., device used, screen size) and reported some interesting
variations in tap distributions over devices.

Whereas experiments in HCI typically focus on quantitative data,
many exemplary experiments also collect qualitative data, for instance
in the form of interviews and observations. Some experiments also
rely solely on qualitative data. For instance O’Hara and Sellen [109]
reported a much-cited experiment on reading from paper and from a
computer. While they used an experimental setup — using for instance
random assignment of participants to either paper or a computer con-
dition — they only reported qualitative data on reading strategies and
activities that differed between paper and computer. Such data is valu-
able when experiments go well (as in O’Hara and Sellen’s study), but
it is also useful in understanding why an experiment failed.
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Running Experiments

The design of an experiment prescribes most of its running. Having a
formal procedure for the experiment is beneficial (e.g., [14]). A formal
procedure may be a script that the experimenter follows, a piece of soft-
ware that runs participants through the experiment, or another way
of systematically instructing participants, administering treatments,
collecting responses, and so forth. One benefit of a formal procedure
is to ensure that participants experience the same instructions and
advice from the experimenter, and thereby reduce variability. Another
benefit stems from the observation that the procedure forms part of
operationalizing the independent variables and of creating the exper-
imental situation that we investigate [42]. Preparing the procedure in
detail (and in writing) allows us to check and discuss whether or not
it reflects our intention with the independent variable, for instance
through reviewing it with peers.

Doing one or more pilot studies is important. A good pilot study
tests the whole, or particular critical parts, of an experiment. The
point is to test both the procedure, data collection (for instance, video
recorders, logging software, observation templates), user interfaces, and
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data analysis. Piloting data analysis can sometimes help identify serious
omissions or mistakes in data collection.

Being present during an experiment observing participants is highly
useful, if it is practically feasible and not expected to affect the exper-
iment. One use is to capture data in a structured way, so as to charac-
terize participants’ behavior and supplement dependent variables. Such
capturing may be done using structured coding schemes or open-ended
observation notes. The design, collection, and analysis of these sources
of observational data share the potential of other observation-based
data collection, and may be thought about and designed as such (e.g.,
[8, 119]). One may also observe, not for systematic data collection and
reporting, but for building up an intuition about data and the phe-
nomena being studied. The purpose of such observation is to generate
ideas about what to look for in data, to derive potential explanations
of observations, and to identify surprising behavior. This latter use of
observation has been highly useful, though time-consuming, in many
experimental studies that I have been involved in. Be aware, of course,
that as a designer of the experiment (and possibly creator of the con-
ditions being compared) you have a vested interest in the outcome.

Doing a post-experimental follow up or debriefing is both useful
to the experimenter and fair to participants. It gives a chance to take
questions, hear comments, and explain the experiment to participants,
if they desire to know more or need to understand why the experi-
ment was designed in a particular way. Some participants also find it
important to receive a copy of a final, written up report on the experi-
ment; some may even have interesting comments on the experimenter’s
interpretation of their behavior. Note that doing experiments online
or through app stores makes debriefing much harder; experimenters
should be much more careful in such circumstances.

Finally, treating participants with respect is important. Respect
implies recognizing participants as human beings, paying due regard
to their needs, feelings, and well-being. It also implies not wasting par-
ticipants’ time on irrelevant or unimportant research. To me, being
respectful to participants summarizes well the many concerns in doing
ethical research. The basic principles of ethical research with humans
were described in the Nuremberg Code and later in the Declaration
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of Helsinki; later guidelines on ethics relevant to HCI include ACM
Code of Ethics and Professional Conduct! and American Psychological
Association’s (APA) Ethical Principles of Psychologists and Code of
Conduct.? Many HCI textbooks offer good advice on how to do ethical
research (e.g., [90]). Some key things to ensure are as follows.

e Voluntary participation and informed consent. Participation
in HCI experiments should be voluntary. It should be pos-
sible to opt out of the experiment at any time, without any
repercussions. Experimenters should tell prospective partic-
ipants about the purpose of the experiment and what par-
ticipants will need to do, so that they can take an informed
decision about whether to participate or not. In rare cases, a
cover story or deception about the true nature of the exper-
iment may be considered; in such cases particular care must
be taken to ensure that the deception is necessary and that
participants are debriefed.

® Protection from harm. Participants in HCI experiments
should be protected from mental or physical harm. Consider
both harm during and after the experiment.

e Privacy. Data from participants should be kept confidential
and anonymous. Data from experiments should be stored
so that outsiders cannot identify participants. Publications
about the experiment should leave participants anonymous
as far as possible; using photos and videos where participants
are identifiable requires permission. Sharing and reporting
data so that they cannot be related back to individuals
are challenging, in particular if biometric, kinematic, geo-
referenced, or similar data are involved. Such data may be
combined to identify participants or groups of participants,
so be careful.

e Legal agreements and terms/conditions surrounding the
experiment. Data collected through tools (e.g., social net-
works) must respect the terms and conditions of those tools.

Lhttp://www.acm.org/about/code-of-ethics.
2 http://www.apa.org/ethics.
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The Association of Internet Researchers Ethics Guide? con-
tains many ethical questions for researchers that collect data
through web-based forums or social networks. Many coun-
tries have local data protection acts that should be followed.
Also, some institutions have internal rules and processes that
experimenters must follow (e.g., enforced by review boards,
see below).

e Contact to researchers. Do a debriefing, as described above. It
should be possible for participants to contact experimenters
after the experiment with questions about the research. It
should also be possible to opt out after the experiment, if a
participant for some reason wants to. So give your contact
details, also in online or app store studies.

Many institutions will have formal requirements in place to help
experimenters do ethically defensible research. These requirements vary
across institutions and countries. In Denmark, for instance, most exper-
iments in HCI do not have to be formally registered and reviewed,
except if they involve human or biological samples or if they relate
to health care. In the US, many universities have set up institutional
review boards (IRBs) that have to approve most or all experiments
with humans. The IRB assesses ethics based on an application that
may describe participants, procedure, risks and benefits of the research,
steps to ensure confidentiality, materials for obtaining consent, and so
forth. Lazar et al. [90] gave an example of an IRB application.

3http://ethics.aoir.org/.
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Reporting Experiments

The way experiments are reported is crucial. Independently of how well
you design and run experiments, insufficient care in reporting, statis-
tics, or explanation of results may turn readers away or upset review-
ers. Therefore, reporting experiments shares the difficulty of writing
in general (see [11, 134] and many others). As a minimum, a research
report must offer enough detail that the reader understand the design
of the experiment and its results. Being clear is key. An example where
experimental reports often fail is in poor, verbal descriptions of con-
structs [127]. In addition, a report needs to describe a design in suffi-
cient detail that a reader can understand who the participants were,
what constructs were hypothesized about, the experimental design, the
key variables, how analysis were done, and how data were interpreted.
Congruent with advice on writing in general, the reports should be suc-
cinct. There is no need to explain what statistics is about when one can
refer to a textbook, nor is there any need to describe all data analyses
considered. Assume the reader impatient with superfluous detail and
long-windedness.

Supplementing this general advice, we next present four comple-
mentary heuristics for reporting experiments: justifying the design,
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providing evidence, narrating results, and being open about alterna-
tive interpretations and limitations.

6.1 Justify the Design

As discussed in earlier sections, many difficult decisions must be made
when designing and running experiments. These decisions often result
from trade-offs, arguments adapted from earlier work, and reasoning
about research methods. In addition to explaining the design, excel-
lent reports on experiments therefore justify the experimental design to
readers so that they understand why key decisions were taken. An excel-
lent report explains most (or the most important) choices in experimen-
tal design, as they have been discussed in earlier parts of the present
monograph. The following list may serve as an illustration:

e Explain hypotheses and how they are justified from earlier
work. The paper mentioned earlier on why people find it
annoying to overhear mobile phone conversations does this
well [99]. Tt cites the earlier work and explains how it supports
each of the hypotheses.

e Explain what the dependent variables are and why they
were chosen. Pirhonen et al. [116] justified using a work-
load measure as follows: “Workload is important in a mobile
setting as users must monitor their surroundings and navi-
gate, therefore fewer attentional resources can be devoted to
the computer. An interface that reduces workload is likely to
be successful in a real mobile setting”.

e Explain the tasks and their rationale. In a comparison of
paper-based and computer-based documents, O’Hara and
Sellen [109] wrote “we use an experimental task which we
believe, based on our field studies of readings in organiza-
tions [reference to earlier work], is both naturalistic and rep-
resentative of reading in real work settings”.

e Choice of analysis: why were data analyzed this particular
way and, if an unusual approach was taken, why not use
a standard approach? When evaluating Bubble Cursor —
a mouse interaction technique with a dynamic activation
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area — Grossman and Balakrishnan [53] wrote “A related
issue was our decision not to use the effective width correc-
tion for accuracy” and explained why they used an alter-
native method for analysis, rather than the correction often
used in the literature.

Justifying the design seems particularly relevant when general consid-
erations on experimental design (e.g., on the benefits of a between-
subjects design) interacts with, or even contradicts, insights from
previous work or the subject matter of the experiment. The exam-
ple from the paper on Bubble Cursor above illustrates this well [53].
Because a non-standard approach to analysis was decided upon, the
authors took particular care in justifying that approach. Had they not,
readers might have wondered about this decision.

The need to justify decisions in experimental design and analysis
was expressed eloquently by Abelson [1, p. xii|:

When you do research, critics may quarrel with the
interpretation of your results, and you better be pre-
pared with convincing counterarguments. (These critics
may never in reality materialize, but the anticipation
of criticism is fundamental to good research and data
analysis. In fact, imagined encounters with antagonistic
sharpsters should inform the design of your research in
the first place.)

Although Abelson’s sharpsters were brought up in the context of data
analysis, they exist in similar numbers for research design. Explaining
all key decisions in experimental design, preferable with explicit ratio-
nales and justification from earlier work, is for me an important check
of the validity of a design. In addition to being invaluable in report-
ing experiments, such justifications are also a resource in designing an
experiment. They help experimenters think through experiments.

6.2 Provide Evidence

Strong reports on experiments should provide evidence. For instance,
the journal Nature instructs reviewers to check if a paper “provides
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1. a recent instruction for submis-

strong evidence for its conclusions”
sions to ACM’s CHI conference suggests that “the validity of your sub-
mission’s contribution must be adequately supported by appropriate
arguments, analyses, evaluations, or data as best fit the contribution
type”2. How can you best provide evidence?

One idea is to back up major conclusions with evidence. Gray and
Salzman [49] provided an illustrative study of how a selection of influ-
ential papers on usability evaluation failed to do so; they named this
a lack of “conclusion validity”. For instance, one paper would advise
on which evaluation method to choose when resources are scarce, even
though it had not studied such a situation. Conclusion validity may
be ensured through careful writing. When we speculate about impli-
cations for design or advice to practitioners from an experiment, one
should note so explicitly (rather than make readers believe that the
speculations were shown by the experiment). Another way to ensure
conclusion validity is to develop a clear chain of evidence. The notion
of chain of evidence was discussed by Yin [145, p. 105] in the context of
case studies (see [77] for a related notion). It suggests that researchers
develop a clear and auditable account of how conclusions are derived
from data. This notion is particularly important in case-study research,
which integrates different types of data, often collected across different
settings. But it also applies to experiments. A clear chain of evidence
helps establish which conclusions may be drawn from a study and may
be used to illustrate to a reader how key claims are backed up by data.
One may, for instance, describe whether different ways of backing up a
conclusion are consistent (e.g., across usability measures, other depen-
dent variables, and data on interaction), explain why some participants
performed unusually well or why performance on tasks differed (but
were expected to show similar patterns), and check the representative-
ness of illustrations and of the key conclusions reported.

John and Marks [78] used a traceable chain of evidence well. They
studied the usefulness of usability evaluation methods, in particular
how trying to fix usability problems found with those methods affected

Lhttp://www.nature.com/authors/editorial_policies/peer_review.html.
2http://chi2013.acm.org/authors/guides/guide-to-a-successful-archive-submission/.
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the use of a revised interface: Would problems go away or be made worse
by the fixes? Their study was documented with a so-called effectiveness
tree, which illustrated all relations among usability problems, whether
or not they had been corrected in the revised interface, and their effect
on users. Even if the tree had not made it into the paper (and helped
the reader), I imagine it was useful for John and Marks in organizing
and checking their analysis.

A common way to provide evidence is with descriptive and infer-
ential statistics. One purpose of such statistics is to summarize data;
another purpose is to establish statistical conclusion validity, that is,
to show that differences in numbers are not just random variation,
but related to real differences between conditions. Many examples have
been given of faults in statistical reasoning within HCI (e.g., [17, 79, 49])
and outside (e.g., [7]). Cairns [17], for instance, reviewed inferential
statistics in a sample of papers on HCI and found that many reported
insufficient details about the tests being performed, failed to check the
assumptions of the tests, performed too many tests, or used the wrong
tests. Many books, however, describe how to do and report statistics
correctly, see for instance [57, 122, 141]; Abelson [1] covered principles
of statistical thinking at a general level. Nevertheless a few comments
specific to HCI may be given here.

Descriptive statistics is the easiest to deal with: its key purpose is
to describe and summarize data. In my view, most papers fail here by
inadequately describing data using descriptive statistics. When reading
an experimental report, I expect that all key comparisons of an experi-
ment are described in a clear way. Without descriptive data, statistical
testing is uninformative. For every measure of central tendency (say,
mean or median) one should also show variability (say, confidence inter-
val or standard deviation). These pieces of information must be present
independently of whether evidence is given in text, tables, or figures.
Of course evidence may be communicated in many other ways than
through text and numbers (e.g., [136]). Although not an experiment in
the sense used in the present paper, Adar et al. [3] employed graphics
brilliantly to illustrate differences in how users revisit web pages.

Inferential statistics concerns drawing conclusions from data with
random variation, for instance due to sampling. Because almost all
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experiments in HCI use samples of participants, they need to ensure
that conclusions about differences between levels of the independent
variables are valid and not just due to noise/randomness. Because of
the sampling, one can almost never compare the means of task com-
pletion times for two user interfaces and conclude anything without
some kind of inferential statistics. In HCI, inferential statistics is most
often based on null-hypothesis significance testing (NHST). The NHST
approach states a null hypothesis and uses particular tests — such as ¢-
tests, x? tests, analysis of variance (ANOVA), or Friedman’s test — as
evidence for an alternative hypothesis [107]. Although NHST is ubiqui-
tous in HCI, many alternatives exist. For instance, it has been proposed
to report only effect sizes in place of significance tests (e.g., [107]), to
report only confidence intervals (e.g., [29]), or to use different modes
of inference (such as Bayesian, see [107]). These proposals may readily
be taken up by experimenters in HCI, although that is rarely done.
Below we discuss mainly reporting based on NHST and adaptations of
that approach (in particular as discussed in [141]). With that narrow-
ing of statistical inference, two things make it easy to do statistics cor-
rectly. First, as mentioned above, how to choose and conduct statistical
analyses is well covered in textbooks. Second, a set of simple analysis
techniques will be sufficient for most experiments. Table 6.1 presents six
commonly used tests in HCI and some things that experimenters should
consider.

Statistical analysis is often quite complex, but there is much value
in trying to simplify it as much as possible. One way to do so is to use
simpler types of analysis (e.g., linear contrasts [121] instead of omnibus
tests followed by post hoc tests), another is to use simpler experimental
designs. It is worth keeping in mind this recommendation from a group
of excellent statisticians [141]:

Choosing a minimally sufficient analysis. The enor-
mous amount of variety of modern quantitative methods
leaves researchers with the nontrivial task of matching
analysis and design to the research question. Although
complex designs and state-of-the-art methods are some-
times necessary to address research questions effectively,
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simpler classical approaches often can provide elegant
and sufficient answers to important questions.

In addition to the basic reasoning above and in Table 6.1, the fol-
lowing list presents issues about inferential statistics that are frequently
misunderstood or overlooked in HCI (see also [33, 79]).

e In some papers (and in many textbooks) a null hypothesis is
discussed: a null hypothesis is simply assuming no difference
between conditions (although the real/substantive hypoth-
esis is that there is a difference). The null hypothesis is a
statistical trick that need not be mentioned in reports on
experiments and that cannot ever be said to be accepted
(because it was assumed to begin with).

® Low p-values from a statistical test do not mean importance,
nor do they mean generalizable or indicate the likelihood of
the (real) hypothesis being investigated. A p-value merely
represents the probability — given or assuming the null
hypothesis — that the samples come from the same distri-
bution (i.e., that they are similar). The key here is to under-
stand that “given or assuming” is crucial. The probability of
data given the null hypothesis (what we do in significance
testing) is different from the probability of the null hypoth-
esis given the data (what one may mistakenly do in taken
p-values to indicate the likelihood of the hypothesis). Confus-
ing these probabilities is called the fallacy of the transposed
conditional and may be illustrated by the difference in the
probability of being dead given that one has been lynched
(high) and the probability of having been lynched given one
is dead (low) [79]. Nickerson [107] discussed other potential
misunderstanding of p-values.

e Statistical significance is different from magnitude (and the
latter is often more important). Effect size quantifies magni-
tude and is easy to compute (e.g., [122]); magnitude may also
be illustrated by comparison of effects to earlier studies or
known standards of performance [1]. Effect size also has the
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nice property that it is unaffected by sample size, in contrast
to p-values.

e Ifone engages in significance testing, one should not focus (too
much) on marginal significant results or on results where the
significance level was fixed only at the time of analysis. Doing
so undermines the logic of statistical significance testing.

e The notion of experiment-wide (or family-wise) error refers to
the risk, across a set of hypotheses investigated in an exper-
iment, to accept one as significant when it is not. It is often
invoked by reviewers when authors conduct a lot of statistical
tests and emphasize a few, significant ones. The key issue is
that if one does multiple tests, the chance of accepting one as
significant by mistake increases. For a single test, the chance
is given by the cutoff for significance, often referred to as «,
typically 0.05. For n tests it is given by 1 — (1 — «)™: if you
do 10 tests, the real chance of accepting a result as signif-
icant by mistake is 40%. One often used remedy is to use
an omnibus analysis of variance; a second remedy is to use
targeted tests such as contrast analysis [121]; a third remedy
is to use post-hoc tests, for instance using the Bonferroni
correction (which uses a/n as criterion for rejection).

® [t is notoriously difficult to use an experiment failing to find a
difference to conclude anything. At the very least, the power
of the experiment should be calculated and used to justify
why readers may learn something from a lack of result (recall
that power refers to the likelihood of detecting a difference
that is present). Sonnenwald et al. [132] used power analysis
to make clear to readers what could reasonably be concluded
from the null result of a comparison of scientific collaborato-
ries to a control condition.

® Leaving out participants or other subsets of data on an ad-
hoc basis violates the logic of statistical testing. It is also
a no-go to add participants to an experimental setup if one
has already begun analyzing it: Simmons and colleagues [130]
showed how this practice inflates the rate of false-positive
results. They showed how researchers can find significant,
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but false, effects 22% of the time (instead of 5%) by start-
ing with 10 participants per condition, and continue to add
participants and test after every participant added. A strict
criterion should be used to eliminate individual data points
or all data from a participant as outliers. Many such criteria
exist, including trimming distributions in either end (say, by
2.5%), removing values more than three standard deviations
from the mean, or discarding observations that are more than
three interquartile ranges from the median or more than 1.5
interquartile ranges from the 25% and 75% quartiles (where
quartiles is the set of three points that divide the data into
four equally sized groups).

Any experimental report that uses inferential statistics
should check the degrees of freedom in its tests. Although
degrees of freedom is explained in most textbooks, some
experimenters get it wrong, raising doubts about whether
the right tests have been performed. For instance, F-tests are
typically reported with degrees of freedom for the numerator
and denominator of the statistic (also called the between-
group and within-group/error degree of freedom, respec-
tively). If one do a between subjects experiment with 3
interfaces and 10 persons using each interface (total of 30),
the degrees of freedom of an ANOVA should be 3 —1=2
(for the numerator or between-groups term) and 30 — 3 = 27
(denominator, within-group). If one instead do a within-
subjects experiment, also with 3 interfaces and 10 persons
in total, then the degrees of freedom of the ANOVA should
be3 —1=2and (3 —1)* (10 — 1) = 18. And if one opts to
do more complex statistics, different denominators might be
used (with different degrees of freedom).

All statistical tests involve assumptions. Know them and
check them. One assumption sometimes ignored in HCI
papers is that observations should be able to vary indepen-
dently (i.e., be statistically independent). For instance, if par-
ticipants worked in a group, the inferential statistics should
be done on the group level because measures of individual
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participants’ performance are not independent or one should
deal with the group effect in other ways (i.e., with more com-
plex statistics).

e Tests may be one- or two-sided; I remain unconvinced of
most one-sided tests in HCI and recommend using two-sided
tests. In a survey of the use of one-sided tests in two journals
on ecology and animal behavior, Lombardi and Hulbert [92]
concluded that “all uses of one-tailed tests in the journals
surveyed seem invalid” (p. 447).

Although this list seems daunting, errors in statistics can normally
be fixed by choosing the right analysis and reasoning correctly about
what an analysis shows; rarely do such errors make it necessary to rerun
an experiment.

6.3 Narrate Results for the Reader

A key quality of excellent reports on experiments is narration. In the
words of Abelson [1], “Meaningful research tells a story with some point
to it” (p. xiii). One way of thinking about narration is to think about
the essential point an experiment is making. Key to this is becoming
clear about the contribution, highlighting it in an experimental report,
and discussing a potential reader’s questions about it. The goal of nar-
ration also implies that readers are interested in understanding the
results and potential explanations thereof, and rarely in statistics or
numbers in themselves. Also, narration is not about retelling the order
in which the experiment was designed or the manner in which results
were obtained: it is about telling a coherent and clear story.

Another purpose of narration is to make the reader understand why
results are interesting. This is about answering a potential sharpster’s
questions that an experiment contains “no surprises”. Some prominent
ways of arguing why a result is interesting are as follows (see Davis [30]
for other ways to argue interestingness):

e To compensate for deficiencies in earlier work.
® To show something for the first time.
® To disprove something believed to be true.
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® To reconcile two conflicting views.
® To develop better theories or models of interactive behavior.

One example of such an argument is seen in a paper by Zhai and
colleagues [147]. They argued that an earlier study of target expansion
was inadequate and designed an experiment to set those limitations
right.

The position taken here is that this is the experimenter’s responsi-
bility to argue interestingness. Any contribution must be described in
the context of earlier work if readers are to figure out why it is inter-
esting. Wilkinson and the task force on statistical inference [141] put
this nicely:

Do not interpret a single study’s results as having
importance independent of the effects reported else-
where in the relevant literature. The thinking presented
in a single study may turn the movement of the litera-
ture, but the results in a single study are important pri-
marily as one contribution to a mosaic of study effects.

In narrating results, most readers want to know “why”, that is,
thoughts on the part of the experimenter on mechanisms behind the
observed results. When explaining mechanisms, interaction patterns
and qualitative data about behavior may supplement the data from
dependent variables. Models may serve as one such explanation; sim-
ple, explanatory concepts or examples of prototypical behavior may
provide others.

As a tactic for narration, Abelson [1] introduced the notion of ticks,
buts, and blobs. A tick is a detailed statement of a distinct research
result (as in ticking off on a form); a but is a statement that qualifies
or constrains ticks (which we will discuss in more detail in the next
section); and a blob is a “cluster of undifferentiated research results”
([1, p. 105]). For Abelson, a tick represents an important finding that
adds to the field. It is not to be confused with omnibus test results (e.g.,
an F-test showing a significant difference among three conditions),
a non-significant test (unless strong power and prior work suggest
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otherwise), or an uninteresting finding (e.g., that width influence per-
formance in Fitts’ law experiments). A tick is also different from the
blob paragraph, which lists many significant tests but never makes
it clear to the reader which are important additions to the research
field and which are just accidental or unimportant. Good experimental
reports provide few, but clearly articulated ticks.

6.4 Acknowledge Alternative Interpretations
and Limitations of Results

As mentioned in an earlier section, experiments have the potential to
limit the influence of “the ego-centric fallacy”, as well as other biases in
the experimenter’s judgment (such as confirmation bias, see [93]). Most
scientists also realize that any single experiment is insufficient. Reports
on experiments should therefore (a) discuss alternative interpretations
of data and their relative merits and (b) openly acknowledge limitations
and concerns in the collection or interpretation of results. If possible,
also present potential remedies to limitations and concerns.

Data from experiments and the analysis of them into some tenta-
tive conclusion are never straightforward, although published papers
sometimes present it that way. The advice here is to carefully acknowl-
edge and discuss alternative interpretations of data. This may both
address readers’ questions about data and interpretation hereof, and
may help focus subsequent research. A couple of approaches to doing so
may be given. First, in an earlier section we discussed articulation and
the “but”. “Buts” are an excellent approach to acknowledging alter-
native interpretations. Second, working through and discussing alter-
native interpretations works well. As an example, Hornbaek and Law
[70] studied correlations among usability measures. They found that
correlations were medium to small. The discussion of that finding was
structured around two alternative interpretations: that it confirmed
earlier work and that it did not match the expectations raised in ear-
lier work. Hornbaek and Law discussed these two interpretations and
the associated earlier work before attempting to conclude on the data.

All experimental results are limited in one way or the other.
Wilkinson et al. [141] gave a nice summary of how and why to
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acknowledge limitations. They wrote: “Note the shortcomings of your
study. Remember, however, that acknowledging limitations is for the
purpose of qualifying results and avoiding pitfalls in future research.
Confession should not have the goal of disarming criticism.” Limita-
tions may concern many parts of the experiment, including its design,
what actually happened when running it, and results that do not make
sense given earlier work. Discussing these is key to great reports on
experiments. Accot and Zhai [2], for instance, followed their set of
experiments that helped derive the steering law with the remark that
“It should be pointed out, however, that there are various limitations
to these simple laws” (p. 301) and discussed how more work is needed
to understand the impact of body limitations and handedness, and to
achieve a higher level of generality.

One reason for highlighting the need to acknowledge limitations is
that the pressure to publish reports on experiments may lead exper-
imenters to leave out important information. Simmons et al. [130]
showed how experimenters could obtain nicely looking results by leav-
ing out data, dropping dependent measures, and attempting different
analysis approaches. It is clear that such approaches are detrimental to
research. Experimenters should report limitations openly.
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Pragmatics of Experiments

The previous sections have discussed some ideals for the design, run-
ning, and reporting of experiments. Next, I briefly want to discuss some
issues in doing real experiments.

Some experiments, perhaps the majority, fail. They do not produce
the hypothesized differences, a task turns out to be irrelevant, or indi-
vidual differences are too large to allow any conclusions. At the design
stage of an experiment one may therefore sensibly think of a fallback
plan: A plan to salvage some of the resources put into an experiment if
it should fail. Such a plan could entail collecting extra data that might
be of interest independently of the outcome of the experiment (qual-
itative data or log data often work well in this regard) or adding an
additional level of independent variable (as discussed earlier), allowing
for discussion of variations in the independent variable. Piloting exper-
iments may also reduce the risk of failure (or allow an experimenter to
abandon or rethink a particular experimental design).

Many parts of this monograph has mentioned simplification, in par-
ticular with respect to the design of experiments and with respect to
the analysis of results. In being pragmatic about experimentation in
HCI, an important insight is that one experiment cannot do all. Most
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often it makes sense to tease apart intricate designs and complex proce-
dures to create simple and understandable experiments. One may think
of a series of smaller experiments, rather than one, all-encompassing
experiment. For instance, Cockburn and colleagues [24] studied menu
navigation and ran a small calibration study and a study of real menu
designs, rather than just doing one large study. Thereby the empiri-
cal part of their argument became more step-wise and provided more
room for correcting poor choices in experimental design and theoretical
modeling.

As discussed in earlier parts of this monograph, experiments are
good for certain research questions and poor for others. One practical
challenge in doing experiments is to ensure that the experimental work
is aligned with the research question. The work should differ depend-
ing on whether one wants to study if UIl works better than UI2, if
a phenomenon is possible with a Ul, if a UI works in real life, if fea-
ture X works better than feature Y, or some other question. We have
already mentioned many potential trade-offs that experimenters face
when trying to align experimental work and research question: con-
trol vs realism, simplification vs complexity, existence proof vs mech-
anisms, and systems vs techniques; others include utility of systems
vs usability, ambition vs costs, and publishability vs potential impact.
Let us revisit one such tradeoff, the extent to which variability should
be controlled, to illustrate the trade-offs to be made. With variabil-
ity we mean variation in dependent measures that are unrelated to
the independent variables. In most cases, we aim to reduce such vari-
ability because it decreases statistical power [127]. Such control could
imply using blocks in an experiment, increasing the reliability of mea-
sures, reducing random variability from the setting, ensuring a con-
sistent understanding of instructions, and so forth. Nevertheless, as
discussed in the initial sections of this work, control typically hurts
realism: controlling tasks means not getting the insight due to variation
in actual tasks users would want to do; controlling the location of use
means missing impromptu adaptation of user interfaces to a location-
dependent need or opportunity. This may or may not be a problem,
depending on the research goals of the experiment. The trade-off here is
that control of variability comes at the expense of lowering realism and
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potentially missing interesting interaction behavior: thinking through
this issue and finding an appropriate ambition for an experiment is a
tough practical question for experimenters. Many other such trade-offs
should be thought about for the particular research question that one
is addressing. Again, one experiment cannot do it all.

One important contribution experimenters can make is to share the
materials of their experiment publicly. Such materials could include
user interfaces, description of procedures, tasks, the data collected,
and the statistical analysis. Inexperienced experimenters can learn a
lot from such material and it enables independent scrutiny (and even
replications) of experiments. One excellent example of such a contribu-
tion was made by Jansen et al. [74]. They studied physical visualizations
and in addition to the published paper, detailed information is available
online about the visualizations, the tasks, the data, the logging, and
the data analysis. Sharing such material with the scientific community
is very valuable.






8

Conclusion

Experiments in HCI work by deliberately introducing interventions
that might affect the interaction between humans and computers and
describing the effects. They form an important part of HCI methodol-
ogy. The present monograph has described some heuristics for design-
ing, running, and reporting experiments. We have argued and sought
to exemplify how the quality of experiments in HCI can been improved
through the use of the heuristics. The heuristics are summarized in
Table 3.1. In particular, we suggested to design experiments that are
focused on a clear research question and pursue strong comparisons.
Earlier work has been argued invaluable in designing and reporting
experiments. Reports on experiments should offer evidence and take
care in narrating results; they should also explore alternative inter-
pretations of results and discuss limitations of the experimental work.
Participants in experiments should be treated with respect and their
understanding of the experimental situation should be given careful
attention. We have also argued that any experiment is limited and that
experimenters should consider this fact when designing and reporting
experiments.
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In concluding, I want to remove a potential misunderstanding about
the goal of experiments. Many of the preceding discussions have been
about presenting experiments; perhaps some of those discussions have
conveyed the impression that good experiments are only about being
able to describe and justify an experimental design or about being
able to package results neatly. They are not. Contribution, soundness,
substance, and perhaps even being right are also important charac-
teristics. As Giner-Sorolla [46] has argued, the pressure to publish and
the increased competitiveness in widely read research outlets make aes-
thetics in research matter more. Aesthetics in research is about mak-
ing designs, data, and results clear and pleasing; it is the opposite
of the messiness, complexity, and open questions that many careful
experimenters experience. Aesthetics, in Giner-Sorolla’s sense, leads to
more emphasis on novelty and importance to ongoing discussions in a
research field, and to less emphasis on scientific soundness. It seems
a dilemma. On the one hand, experiments should get published and
be presented in a clear and pleasing way. On the other hand, experi-
ments are about doing the right thing, about seeking out complexity,
and about taking risks. If anything, the present work has emphasized
the latter. Nevertheless, every experimenter in HCI must balance the
horns of this dilemma by carefully fleshing out and trading off the whys
and hows of experimental work.



Acknowledgments

Thanks to Aran Lunzer, who inspired me to write this paper. I am
grateful for comments on earlier drafts by Ben Bederson, Morten
Hertzum, Harry Hochheiser, Alex Tuch, Shumin Zhai, and several
anonymous reviewers.

69






References

[1]

2]

3]

[6]

[7]

R. Abelson, Statistics as Principled Argument. New York: Lawrence Erlbaum,
1995.

J. Accot and S. Zhai, “Beyond Fitts’ law: models for trajectory-based HCI
tasks,” in Proceedings of the ACM SIGCHI Conference on Human factors in
computing systems, pp. 295-302, New York, NY, USA: ACM, 1997.

E. Adar, J. Teevan, and S. T. Dumais, “Large scale analysis of web revisitation
patterns,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 1197-1206, New York, NY, USA: ACM, 2008.

R. Adcock and D. Collier, “Measurement Validity: A shared Standard for
Qualitative and Measurement Validity: A shared Standard for Qualitative and
Quantitative Research.,” American Political Science Review, vol. 95, no. 3,
pp. 529-546, 2001.

D. L. Alonso, A. Rose, C. Plaisant, and K. L. Norman, “Viewing personal his-
tory records: A comparison of tabular format and graphical presentation using
LifeLines,” Behaviour & Information Technology, vol. 17, no. 5, pp. 249-262,
1998.

C. A. Anderson, J. J. Lindsay, and B. J. Bushman, “Research in the Psycho-
logical Laboratory: Truth or Triviality?,” Current Directions in Psychological
Science, vol. 8, no. 1, pp. 3-9, 1999.

J. Bailar and F. Mosteller, “Guidelines for statistical reporting in articles for
medical journals,” Annals of Internal Medicine, vol. 108, no. 2, pp. 266—73,
1998.

R. Bakeman, “Behavioral observation and coding,” in Handbook of research
methods in social and personality psychology, (H. T. Reis and C. M. Judd,
eds.), pp. 138-159, Cambridge, UK: Cambridge University Press, 2000.

71



72  References

[9]

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]
20]
(21]
(22]

23]

24]

J. A. Bargas-Avila and K. Hornbak, “Old wine in new bottles or novel chal-
lenges: a critical analysis of empirical studies of user experience,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp- 2689-2698, New York, NY, USA: ACM, 2011.

L. Barkhuus and J. A. Rode, “From Mice to Men - 24 Years of Evaluation in
CHI,” in Paper presented at alt.chi, 2007.

J. Barzun, Simple & Direct. New York, NY: Harper Perennial, 2001.

L. Berkowitz and E. Donnerstein, “External validity is more than skin deep:
Some answers to criticisms of laboratory experiments.,” American psycholo-
gist, vol. 37, no. 3, p. 245, 1982.

N. Bevan, “Measuring usability as quality of use,” Software Quality Journal,
vol. 4, no. 2, pp. 115-130, 1995.

A. Blandford, A. Cox, and P. Cairns, “Controlled experiments,” in Research
methods for Human Computer Interaction, (P. Cairns and A. L. Cox, eds.),
Cambridge, UK: Cambridge University Press, 2008.

M. Bunge, Causality and modern science. New York: Dover Publications, 3rd
ed., 1979.

M. M. Burnett, L. Beckwith, S. Wiedenbeck, S. D. Fleming, J. Cao, T. H.
Park, V. Grigoreanu, and K. Rector, “Gender pluralism in problem-solving
software,” Interacting with Computers, vol. 23, no. 5, pp. 450 — 460, 2011.

P. Cairns, “HCI... not as it should be: inferential statistics in HCI research,”
in Proceedings of the 21st British HCI Group Annual Conference on Peo-
ple and Computers, pp. 195-201, Swinton, UK: British Computer Society,
2007.

J. Campbell, “Labs, fields, and straw issues,” in Generalizing from laboratory
to field settings: Research findings from industrial-organizational psychology,
organizational behavior, and human resource management, (E. Locke, ed.),
pp- 269-279, Lexington, MA: Lexington Books, 1986.

J. Campbell, R. Daft, and C. Hulin, What to study: Generating and developing
research questions. Beverly Hills, CA: Sage, 1982.

S. K. Card, W. K. English, and B. Burr, “Evaluation of mouse, rate-controlled
isometric joystick, step keys, and text keys for text selection on a CRT,”
FErgonomics, vol. 21, no. 8, pp. 601-613, 1978.

S. Carpendale, “Evaluating information visualizations,” in Information Visu-
alization: Human-Centered Issues and Perspectives, (A. Kerren, J. Stasko,
J.-D. Fekete, and C. North, eds.), pp. 19-45, Berlin: Springer, 2008.

T. Chamberlin, “The method of multiple working hypotheses,” Science,
vol. 15, no. 366, pp. 92-96, reprinted 1965, v. 148, p. 754-759., 1890.

J. P. Chin, V. A. Diehl, and K. L. Norman, “Development of an instrument
measuring user satisfaction of the human-computer interface,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 213-218, New York, NY, USA: ACM, 1988.

A. Cockburn, C. Gutwin, and S. Greenberg, “A predictive model of menu
performance,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 627-636, New York, NY, USA: ACM, 2007.



(25]

(26]
27]
(28]
29]
(30]

(31]

32]

(33]

(34]

(35]

(36]
37]
(38]

(39]

(40]

References 73

A. Cockburn and B. McKenzie, “Evaluating the effectiveness of spatial mem-
ory in 2D and 3D physical and virtual environments,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pp. 203-210,
New York, NY, USA: ACM, 2002.

J. Cohen, Statistical power analysis for the behavioral sciences. Hillsdale, NJ:
Lawrence Erlbaum, 1988.

J. Cohen, “A power primer,” Psychological bulletin, vol. 112, no. 1, p. 155,
1992.

H. Cooper, Synthesizing research: A guide for literature reviews. Thousand
Oaks, CA: Sage Publications, third ed., 1998.

G. Cumming and S. Finch, “Inference by eye: Confidence intervals and how
to read pictures of data,” American Psychologist, vol. 60, pp. 170-180, 2005.
M. Davis, “That’s interesting,” Philosophy of the Social Sciences, vol. 1, no. 2,
p- 309, 1971.

S. A. Douglas, A. E. Kirkpatrick, and I. S. MacKenzie, “Testing pointing
device performance and user assessment with the ISO 9241, Part 9 standard,”
in Proceedings of the SIGCHI conference on Human Factors in Computing
Systems, pp. 215-222, New York, NY, USA: ACM, 1999.

P. Dragicevic, A. Bezerianos, W. Javed, N. Elmqvist, and J.-D. Fekete, “Tem-
poral distortion for animated transitions,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 2009—2018, New York,
NY, USA: ACM, 2011.

M. Dunlop and M. Baillie, “Paper Rejected (p > 0.05): An Introduction to the
Debate on Appropriateness of Null-Hypothesis Testing,” International Journal
of Mobile Human Computer Interaction (IJMHCI), vol. 1, no. 3, pp. 86-93,
2009.

P. Edwards, F. Sainfort, T. Kongnakorn, and J. Jacko, “Methods of Evaluating
Outcomes,” in Handbook of Human Factors and Ergonomics, (G. Salvendy,
ed.), pp. 1150-1187, Hoboken, NJ: Wiley, third ed., 2006.

D. E. Egan, J. R. Remde, L. M. Gomez, T. K. Landauer, J. Eberhardt, and
C. C. Lochbaum, “Formative design evaluation of superbook,” ACM Trans-
actions on Information Systems, vol. 7, no. 1, pp. 30-57, Jan 1989.

D. Fanelli, “Negative results are disappearing from most disciplines and coun-
tries,” Scientometrics, vol. 90, no. 3, pp. 891-904, 2012.

G. Firebaugh, Seven rules for social research. Princeton, NJ: Princeton Uni-
versity Press, 2008.

J. Fleiss, Statistical methods for rates and proportions. New York, NY: John
Wiley & Sons, second ed., 1981.

C. Forlines, D. Wigdor, C. Shen, and R. Balakrishnan, “Direct-touch vs. mouse
input for tabletop displays,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 647-656, New York, NY, USA:
ACM, 2007.

O. Frandsen-Thorlacius, K. Hornbsk, M. Hertzum, and T. Clemmensen,
“Non-universal usability?: a survey of how usability is understood by Chi-
nese and Danish users,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 41-50, New York, NY, USA: ACM, 2009.



74  References

(41]

(42]

(43]

(44]
(45]

(46]

(47]

(48]

(49]

[50]

[51]

[52]

[53]

[54]

[55]

E. Frgkjeer, M. Hertzum, and K. Hornbazk, “Measuring usability: are effec-
tiveness, efficiency, and satisfaction really correlated?,” in Proceedings of the
SIGCHI conference on Human Factors in Computing Systems, pp. 345-352,
New York, NY, USA: ACM, 2000.

H. L. Fromkin and S. Streufert, “Laboratory Experimentation,” in Handbook
of Industrial and Organizational Psychology, (M. Dunnette, ed.), Chicago, IL:
Rand-McNally, 1976.

J. Garst, N. Kerr, S. Harris, and L. Sheppard, “Satisficing in hypothesis gen-
eration,” The American journal of psychology, vol. 115, no. 4, pp. 475-500,
2002.

V. Gawron, Human performance, workload, and situational awareness mea-
sures handbook. Boca Raton, FL: CRC, 2008.

A. S. Gerber and D. P. Green, Field experiments: Design, analysis, and inter-
pretation. New York, NY: WW Norton, 2012.

R. Giner-Sorolla, “Science or art? How aesthetic standards grease the way
through the publication bottleneck but undermine science,” Perspectives on
Psychological Science, vol. 7, no. 6, pp. 562-571, 2012.

R. L. Glass, V. Ramesh, and I. Vessey, “An analysis of research in computing
disciplines,” Communications of the ACM, vol. 47, no. 6, pp. 89-94, Jun 2004.
J. D. Gould, J. Conti, and T. Hovanyecz, “Composing letters with a simulated
listening typewriter,” Communications of the ACM, vol. 26, no. 4, pp. 295-308,
Apr 1983.

W. Gray and M. Salzman, “Damaged merchandise? A review of experiments
that compare usability evaluation methods,” Human—Computer Interaction,
vol. 13, no. 3, pp. 203—261, 1998.

S. Greenberg and B. Buxton, “Usability evaluation considered harmful (some
of the time),” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 111-120, New York, NY, USA: ACM, 2008.

A. Greenwald, “Within-subjects designs: To use or not to use?,” Psychological
Bulletin, vol. 83, no. 2, p. 314, 1976.

A. Greenwald, A. Pratkanis, M. Leippe, and M. Baumgardner, “Under what
conditions does theory obstruct research progress?,” Psychological review,
vol. 93, no. 2, p. 216, 1986.

T. Grossman and R. Balakrishnan, “The bubble cursor: enhancing target
acquisition by dynamic resizing of the cursor’s activation area,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 281-290, New York, NY, USA: ACM, 2005.

T. Grossman, G. Fitzmaurice, and R. Attar, “A survey of software learnability:
metrics, methodologies and guidelines,” in Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pp. 649-658, New York, NY,
USA: ACM, 2009.

Z. Guan, S. Lee, E. Cuddihy, and J. Ramey, “The validity of the stimulated
retrospective think-aloud method as measured by eye tracking,” in Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Systems,
pp. 1253-1262, New York, NY, USA: ACM, 2006.



[56]

[57]

[58]

[59]

(60]

(61]

(62]

(63]

(64]

[65]

[66]

[67]

(68]

(69]

[70]

References 75

C. Gutwin and S. Greenberg, “Effects of awareness support on groupware
usability,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 511-518, New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1998.

P. Harris, Designing and reporting experiments in psychology. Milton Keynes:
Open University Press, 2008.

S. Hart and L. Staveland, “Development of NASA-TLX (Task Load Index):
Results of empirical and theoretical research,” in Human mental workload,
(P. A. Hancock and N. Meshkati, eds.), pp. 139-183, North Holland: Elsevier,
1988.

M. Hassenzahl, “Experience Design: Technology for all the right reasons,”
Synthesis Lectures on Human-Centered Informatics, vol. 3, no. 1, pp. 1-95,
2010.

M. Hassenzahl, M. Burmester, and F. Koller, “AttrakDiff: Ein Fragebogen
zur Messung wahrgenommener hedonischer und pragmatischer Qualitit,” in
Mensch € computer, pp. 187-196, 2003.

M. Hassenzahl and A. Monk, “The inference of perceived usability from
beauty,” Human—Computer Interaction, vol. 25, no. 3, pp. 235-260, 2010.

J. Henrich, S. J. Heine, and A. Norenzayan, “The weirdest people in the
world,” Behavioral and Brain Sciences, vol. 33, no. 2-3, pp. 61-83, 2010.

N. Henze, E. Rukzio, and S. Boll, “Observational and experimental investi-
gation of typing behaviour using virtual keyboards for mobile devices,” in
Proceedings of the 2012 ACM annual conference on Human Factors in Com-
puting Systems, pp. 2659-2668, New York, NY, USA: ACM, 2012.

M. Hertzum and E. Frgkjeer, “Browsing and querying in online documentation:
a study of user interfaces and the interaction process,” ACM Transactions on
Computer-Human Interaction, vol. 3, no. 2, pp. 136161, Jun 1996.

D. M. Hilbert and D. F. Redmiles, “Extracting usability information from
user interface events,” ACM Computing Surveys, vol. 32, no. 4, pp. 384-421,
Dec 2000.

J. 1. Hong and J. A. Landay, “WebQuilt: a framework for capturing and visual-
izing the web experience,” in Proceedings of the 10th international conference
on World Wide Web, pp. 717-724, New York, NY, USA: ACM, 2001.

K. Hornbak, “Current practice in measuring usability: Challenges to usability
studies and research,” International Journal of Man-Machine Studies, vol. 64,
no. 2, pp. 79-102, 2006.

K. Hornbak, “Dogmas in the assessment of usability evaluation methods,”
Behaviour & Information Technology, vol. 29, no. 1, pp. 97-111, 2010.

K. Hornbazk and E. Frgkjeer, “Reading patterns and usability in visualizations
of electronic documents,” ACM Transactions on Computer-Human Interac-
tion, vol. 10, no. 2, pp. 119-149, 2003.

K. Hornbazk and E. L.-C. Law, “Meta-analysis of correlations among usability
measures,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, pp. 617-626, New York, NY, USA: ACM, 2007.



76  References

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

(84]

W. Hwang and G. Salvendy, “Number of people required for usability evalua-
tion: the 1042 rule,” Communications of the ACM, vol. 53, no. 5, pp. 130-133,
2010.

ISO, ISO 9241-11: Ergonomic requirements for office work with visual display
terminals (VDTs) — Part 11: Guidance on usability. Geneva, Switzerland:
International Organization for Standardization, 1998.

M. R. Jakobsen and K. Hornbak, “Evaluating a fisheye view of source code,” in
Proceedings of the 2006 Conference on Human Factors in Computing Systems,
pp- 377386, New York, NY: ACM Press, 2006.

Y. Jansen, P. Dragicevic, and J.-D. Fekete, “Evaluating the Efficiency of Phys-
ical Visualizations,” in Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 25693-2602, New York, NY, USA: ACM Press,
2013.

S. Jarvenpaa, G. Dickson, and G. DeSanctis, “Methodological issues in exper-
imental IS research: experiences and recommendations,” MIS quarterly, vol. 9,
no. 2, pp. 141-156, 1985.

R. Jeffries, J. Miller, C. Wharton, and K. Uyeda, “User interface evaluation in
the real world: a comparison of four techniques,” in Proceedings of the SIGCHI
conference on Human factors in computing systems, pp. 119-124, New York,
NY: ACM, ACM Press, 1991.

B. John, “Evidence-based practice in human-computer interaction and evi-
dence maps,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1-5, 2005.

B. John and S. Marks, “Tracking the effectiveness of usability evaluation
methods,” Behaviour & Information Technology, vol. 16, no. 4-5, pp. 188-202,
1997.

M. Kaptein and J. Robertson, “Rethinking statistical analysis methods for
CHI,” in Proceedings of the 2012 ACM annual conference on Human Factors
in Computing Systems, pp. 1105-1114, New York, NY, USA: ACM, 2012.

M. C. Kaptein, C. Nass, and P. Markopoulos, “Powerful and consistent anal-
ysis of likert-type ratingscales,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2391-2394, New York, NY, USA:
ACM, 2010.

D. Kelly, “Methods for evaluating interactive information retrieval systems
with users,” Foundations and Trends in Information Retrieval, vol. 3, no. 1-2,
pp. 1-224, 2009.

G. Keren, “Between-or within-subjects design: A methodological dilemma,”
in A Handbook for Data Analysis in the Behaviorial Sciences, (G. Keren and
C. Lewis, eds.), Hillsdale, NJ: Lawrence Erlbaum, 1992.

N. Kerr, “HARKing: Hypothesizing after the results are known,” Personality
and Social Psychology Review, vol. 2, no. 3, pp. 196-217, 1998.

J. Kjeldskov, M. Skov, B. Als, and R. Hgegh, “Is it worth the hassle? Exploring
the added value of evaluating the usability of context-aware mobile systems
in the field,” in Mobile Human-Computer Interaction, pp. 529-535, Springer,
2004.



(85]

(86]

(87]

(88]

(89]

(90]

(91]

(92]
(93]

(94]

[95]

96]

[97]
(98]

(99]

[100]

References 77

H. Lam and T. Munzner, “Increasing the utility of quantitative empirical
studies for meta-analysis,” in Proceedings of the 2008 conference on BEyond
time and errors: novel evaLuation methods for Information Visualization,
pp. 21-27, ACM, 2008.

T. Landauer, “Research methods in human-computer interaction,” in Hand-
book of human-computer interaction, (M. Helander, T. K. Landauer, and
P. Prabhu, eds.), pp. 203-227, Amsterdam: Elsevier, second ed., 1997.

P. Lang, “Behavioral treatment and bio-behavioral assessment: Computer
applications,” in Technology in Mental Health Care Delivery Systems, (J. Sid-
owski, H. Johnson, and T. Williams, eds.), Norwood, NJ: Ablex, 1980.

K. Larson and M. Czerwinski, “Web page design: implications of memory,
structure and scent for information retrieval,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 25-32, New York,
NY, USA: ACM Press, 1998.

T. Lavie and N. Tractinsky, “Assessing dimensions of perceived visual aesthet-
ics of web sites,” International Journal of Human-Computer Studies, vol. 60,
no. 3, pp. 269-298, 2004.

J. Lazar, J. Feng, and H. Hochheiser, Research methods in human-computer
interaction. Chichester, UK: Wiley, 2010.

J. Lewis, “IBM computer usability satisfaction questionnaires: psychomet-
ric evaluation and instructions for use,” International Journal of Human-
Computer Interaction, vol. 7, no. 1, pp. 57-78, 1995.

C. M. Lombardi and S. H. Hurlbert, “Misprescription and misuse of one-tailed
tests,” Austral Ecology, vol. 34, no. 4, pp. 447-468, 2009.

R. MacCoun, “Biases in the interpretation and use of research results,” Annual
review of psychology, vol. 49, no. 1, pp. 259287, 1998.

S. Mahlke and M. Thiiring, “Studying antecedents of emotional experiences
in interactive contexts,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 915-918, New York, NY: ACM, ACM Press,
2007.

D. Martin, Doing psychology experiments. Wadsworth Publishing Company,
2007.

J. E. McGrath, “Methodology matters: Doing research in the behavioral
and social sciences,” in Human-Computer Interaction: Toward the Year 2000,
(R.M.Baecker, J. Grudin, and W. A. Buxton, eds.), pp. 152-169, Los Altos,
CA: Morgan Kaufmann Publishers, 1995.

W. McGuire, “Creative hypothesis generating in psychology: Some useful
heuristics,” Annual Review of Psychology, vol. 48, no. 1, pp. 1-30, 1997.

D. Meister, Conceptual aspects of human factors. Johns Hopkins University
Press Baltimore, 1989.

A. Monk, J. Carroll, S. Parker, and M. Blythe, “Why are mobile phones
annoying?,” Behaviour € Information Technology, vol. 23, no. 1, pp. 3341,
2004.

D. Mook, “In defense of external invalidity.,” American psychologist, vol. 38,
no. 4, pp. 379-387, 1983.



78  References

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

M. Moshagen and M. Thielsch, “Facets of visual aesthetics,” International
Journal of Human-Computer Studies, vol. 68, no. 10, pp. 689-709, 2010.

F. Mueller, S. Agamanolis, and R. Picard, “Exertion interfaces: sports over a
distance for social bonding and fun,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 561-568, New York, NY, USA:
ACM, 2003.

T. Munzner, “Process and pitfalls in writing information visualization research
papers,” in Information Visualization: Human-Centered Issues and Perspec-
tives, (A. Kerren, J. Stasko, J.-D. Fekete, and C. North, eds.), pp. 134-153,
Berlin: Springer, 2008.

C. Nass, Y. Moon, B. J. Fogg, B. Reeves, and C. Dryer, “Can computer
personalities be human personalities?,” in Conference Companion on Human
Factors in Computing Systems, pp. 228-229, New York, NY, USA: ACM,
1995.

W. Newman and A. Taylor, “Towards a methodology employing critical
parameters to deliver performance improvements in interactive systems,”
in Proceedings IFIP TC13 Seventh International Conference on Human-
Computer Interaction, pp. 605—612, Amsterdam: IOS press, 1999.

W. Newman, “A preliminary analysis of the products of HCI research, using
pro forma abstracts,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 278284, New York, NY, USA: ACM,
1994.

R. Nickerson, “Null hypothesis significance testing: a review of an old and
continuing controversy.,” Psychological methods, vol. 5, no. 2, p. 241, 2000.
J. Nielsen, Usability engineering. Boston, MA: AP Professional, 1993.

K. O’Hara and A. Sellen, “A comparison of reading paper and on-line docu-
ments,” in Proceedings of the SIGCHI conference on Human factors in com-
puting systems, pp. 335-342, New York, NY: ACM Press, 1997.

J. S. Olson, G. M. Olson, M. Storrgsten, and M. Carter, “Groupwork close up:
a comparison of the group design process with and without a simple group edi-
tor,” ACM Transactions on Information Systems, vol. 11, no. 4, pp. 321-348,
Oct 1993.

A. Oulasvirta, “Fielding Usability Evaluation,” IEFE Pervasive Computing,
vol. 11, no. 4, pp. 60-67, 2012.

A. Oulasvirta, M. Wahlstrom, and K. Anders Ericsson, “What does it mean to
be good at using a mobile device? An investigation of three levels of experience
and skill,” International Journal of Human-computer Studies, vol. 69, no. 3,
pp. 155-169, 2011.

T. Paek, S. Dumais, and R. Logan, “WaveLens: a new view onto Internet
search results,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pp. 727-734, New York, NY, USA: ACM, 2004.

G. Paolacci, J. Chandler, and P. Ipeirotis, “Running experiments on amazon
mechanical turk,” Judgment and Decision Making, vol. 5, no. 5, pp. 411-419,
2010.

D. Parnas and P. Clements, “A rational design process: How and why to fake
it,” IEEE Transactions on Software Engineering, no. 2, pp. 251-257, 1986.



[116]

[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

References 79

A. Pirhonen, S. Brewster, and C. Holguin, “Gestural and audio metaphors as a
means of control for mobile devices,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 291-298, New York, NY, USA:
ACM, 2002.

J. Platt, “Strong inference,” Science, vol. 146, no. 3642, pp. 347-353, 1964.
T. L. Roberts and T. P. Moran, “The evaluation of text editors: method-
ology and empirical results.,” Communications of the ACM, vol. 26, no. 4,
pp- 265283, Apr. 1983.

C. Robson, Real world research: A resource for social scientists and
practitioner-researchers. Oxford, UK: Blackwell, 2002.

R. Rosenthal and R. Rosnow, The volunteer subject. New York, NY: John
Wiley & Sons, 1975.

R. Rosenthal and R. Rosnow, Contrast analysis: Focused comparisons in the
analysis of variance. Cambridge, UK: Cambridge University Press, 1985.

R. Rosenthal and R. Rosnow, Essentials of behavioral research: Methods and
data analysis. New York, NY: McGraw-Hill, 1991.

P. M. Sanderson and C. Fisher, “Exploratory sequential data analysis: foun-
dations,” Human-computer Interaction, vol. 9, no. 4, pp. 251-317, Sep 1994.
J. Sauro and J. R. Lewis, “Correlations among prototypical usability metrics:
evidence for the construct of usability,” in Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 1609-1618, New York,
NY, USA: ACM, 2009.

A. Sears and B. Shneiderman, “Split menus: effectively using selection fre-
quency to organize menus,” ACM Transactions on Computer-Human Inter-
action, vol. 1, no. 1, pp. 27-51, Mar 1994.

D. Sears, “College sophomores in the laboratory: Influences of a narrow data
base on social psychology’s view of human nature.,” Journal of Personality
and Social Psychology, vol. 51, no. 3, p. 515, 1986.

W. R. Shadish, T. Cook, and D. Campbell, FEzperimental and quasi-
experimental designs for generalized causal inference. Boston, MA: Houghton
Mifflin Company, 2002.

B. Shneiderman, Designing the user interface. Reading, MA: Addison-Wesley,
1987.

B. Shneiderman and C. Plaisant, “Strategies for evaluating information visual-
ization tools: multi-dimensional in-depth long-term case studies,” in Proceed-
ings of the 2006 AVI workshop on BEyond time and errors: novel evaluation
methods for information visualization, pp. 1-7, ACM, 2006.

J. P. Simmons, L. D. Nelson, and U. Simonsohn, “False-Positive Psychology
Undisclosed Flexibility in Data Collection and Analysis Allows Presenting
Anything as Significant,” Psychological Science, vol. 22, no. 11, pp. 1359-1366,
2011.

D. Sjgberg, J. Hannay, O. Hansen, V. Kampenes, A. Karahasanovic, N. Liborg,
and A. Rekdal, “A survey of controlled experiments in software engineer-
ing,” IEEFE Transactions on Software Engineering, vol. 31, no. 9, pp. 733-753,
2005.



80 References

[132]

[133]

[134]
[135]

[136]
[137]

[138]
[139]

[140]

[141]

[142]

[143]

[144]

[145]
[146]

[147]

D. H. Sonnenwald, M. C. Whitton, and K. L. Maglaughlin, “Evaluating a sci-
entific collaboratory: Results of a controlled experiment,” ACM Transactions
on Computer-Human Interaction, vol. 10, no. 2, pp. 150-176, Jun 2003.

R. Soukoreff and I. MacKenzie, “Towards a standard for pointing device eval-
uation, perspectives on 27 years of Fitts’ law research in HCIL,” International
Journal of Human-Computer Studies, vol. 61, no. 6, pp. 751-789, 2004.

W. Strunk and E. White, The elements of style. New York, NY: The Macmil-
lan Company, 1959.

W. Tichy, “Should computer scientists experiment more?,” Computer, vol. 31,
no. 5, pp. 32-40, 1998.

E. Tufte, Beautiful evidence. Cheshire, CT: Graphics Press, 2006.

T. Tullis and W. Albert, Measuring the user experience: collecting, analyzing,
and presenting usability metrics. San Francisco, CA: Morgan Kaufmann, 2008.
E. Webb, D. Campbell, R. Schwartz, L. Sechrest, and J. Grove, Nonreactive
measures in the social sciences. Boston: Houghton Mifflin, 1981.

R. Weber, “Editor’s comments: the rhetoric of positivism versus interpre-
tivism: a personal view,” MIS quarterly, vol. 28, no. 1, pp. iii—xii, 2004.

S. Whittaker, L. Terveen, and B. Nardi, “Let’s stop pushing the envelope
and start addressing it: a reference task agenda for HCI,” Human—Computer
Interaction, vol. 15, no. 2-3, pp. 75-106, 2000.

L. Wilkinson and T. T. F. on Statistical Inference, “Statistical methods in
psychology journals: Guidelines and explanations.,” American psychologist,
vol. 54, no. 8, p. 594, 1999.

D. Willer and H. Walker, Building experiments: Testing social theory. Stan-
ford, CA: Stanford University Press, 2007.

J. O. Wobbrock, L. Findlater, D. Gergle, and J. J. Higgins, “The aligned rank
transform for nonparametric factorial analyses using only anova procedures,”
in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 143-146, New York, NY, USA: ACM, 2011.

J. Yi, Y. ah Kang, J. Stasko, and J. Jacko, “Toward a deeper understanding
of the role of interaction in information visualization,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1224-1231, 2007.
R. Yin, Case study research: Design and methods. Thousand Oaks, CA: Sage
Publications, third ed., 2003.

M. Zelkowitz and D. Wallace, “Experimental models for validating technol-
ogy,” Computer, vol. 31, no. 5, pp. 23-31, 1998.

S. Zhai, S. Conversy, M. Beaudouin-Lafon, and Y. Guiard, “Human on-line
response to target expansion,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 177-184, New York, NY, USA:
ACM, 2003.



	Introduction
	Why Conduct Experiments?
	Reasons for Experiments
	Alternatives to Experiments

	How to Conduct Good Experiments?
	Finding a Significant and Interesting Research Question
	Some Heuristics for Good Experiments

	Designing Experiments
	Hypotheses and Theory
	Independent Variables
	Structuring Experiments
	Participants
	Tasks and Activities
	Setting
	Dealing with Other Factors
	Choosing Dependent Variables
	Describing the Interaction Process

	Running Experiments
	Reporting Experiments
	Justify the Design
	Provide Evidence
	Narrate Results for the Reader 
	Acknowledge Alternative Interpretations and Limitations of Results

	Pragmatics of Experiments
	Conclusion
	Acknowledgments
	References

