
Article

T r ansie nt or p e r m an e nt fish eye vie ws:
A compa r ative eva l uation of sou r ce
cod e int e r faces

Mi k k e l Rønn e Ja kobse n1 and K asp e r Hor nb æ k 1

Abst r act
Transient use of information visualization may support specific tasks without permanently changing the user
interface. Transient visualizations provide immediate and transient use of information visualization close to
and in the context of the user’s focus of attention. Little is known, however, about the benefits and limitations
of transient visualizations. We describe an experiment that compares the usability of a fisheye view that
participants could call up temporarily, a permanent fisheye view, and a linear view: all interfaces gave
access to source code in the editor of a widespread programming environment. Fourteen participants per-
formed varied tasks involving navigation and understanding of source code. Participants used the three
interfaces for between four and six hours in all. Time and accuracy measures were inconclusive, but sub-
jective data showed a preference for the permanent fisheye view. We analyse interaction data to compare how
participants used the interfaces and to understand why the transient interface was not preferred. We con-
clude by discussing seamless integration of fisheye views in existing user interfaces and future work on
transient visualizations.

K eywor ds
information visualization, fisheye view, transient visualizations, user study, programming

Int r oduction
A fundamental challenge in information visualization
is to map data to visual structures and to transform
those visual structures into views suitable for users’
tasks.1 Seesoft, for example, maps lines in a source
code file to line marks on a vertical axis, aimed at
helping users understand changes to the code.2

Document lens uses a focus+ context transformation
to allow users to inspect a particular part of a docu-
ment while being able to see the entire document to
stay in context.3

The user’s control of the visual structures and view
transformations is central to visualization.1 Often
visualizations are designed to support a specific task
and make fixed mappings and transformations that
are effective in that task. In contrast, applications
often support a variety of tasks in complex work set-
tings. Integrating a visualization aimed at supporting
a specific task in an existing application results in per-
manent changes to the user interface. Thus, it seems
there is a gap in our understanding of how users
can control a visualization to switch between visual
structures or view transformations, which makes it

difficult to integrate visualizations in established user
interfaces.

One alternative would be to use information visual-
ization without permanently changing the user inter-
face. Transient visualizations aim to do that by
providing immediate and transient use of information
visualization close to, and in the context of, the user’s
focus of attention.4 By using transient visualizations to
support specific tasks and contexts of use, the perma-
nent view can be dedicated to information used across
tasks and contexts of use. However, empirical data on
the relative benefits of transient and permanent inter-
faces are lacking.

This article studies fisheye views of source code – a
visualization that has been shown to help programmers

1Department of Computer Science, University of Copenhagen,
Njalsgade 128, Building 24, 5th Floor, DK-2300 Copenhagen,
Denmark

Cor r esponding author :
Mikkel Rønne Jakobsen, Department of Computer Science,
University of Copenhagen, Njalsgade 128, Building 24, 5th Floor,
DK-2300 Copenhagen, Denmark
Email: mikkelrj@diku.dk

Information Visualization
11(2) 151–167
! The Author(s) 2011
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1473871611405643
ivi.sagepub.com

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


in navigating and understanding source code.5 The fish-
eye view as originally proposed by Furnas6 balances in
a single view ‘the need for local detail against the need
for global context.’ A fisheye view of source code does
so by displaying only those parts of the code with the
highest degree of interest (DOI) given the user’s current
focus. However, information shown because it has a
high DOI may not be equally important in all tasks.
In some tasks, like, for instance, reading or editing
source code, a fisheye view may even be unfavorable
compared to a large ‘local detail’ view of source code.
One solution is to allow users to call up a fisheye view
on demand. A transient fisheye view of source code that
can be temporarily called up may support navigation
and understanding while still providing a large view of
code for reading and editing.

We describe an experiment designed to gain insight
into the benefits and limitations of permanent and tran-
sient versions of a fisheye view. Compared to an earlier
paper on transient visualization,4 we present richer
experimental data from a much more complex
domain. This article starts by relating this study to pre-
vious work on transient use of visualization and light-
weight interaction (‘Related work’ section). Next, the
interfaces that are investigated in this article are
described (‘Transient and permanent fisheye views’ sec-
tion), as is the experiment designed to investigate their
benefits and limitations (‘Experiment’ section). Based
on the results from the experiment (‘Results’ section),
we discuss how to advance research in information
visualization and how to support work in complex
domains with fisheye interfaces and other information
visualizations (‘Discussion’ section).

Re l at e d wo r k
The idea of transient visualizations was introduced in
Jakobsen and Hornbæk.4 According to Jakobsen and
Hornbæk,4 transient visualizations are immediate
(bring the user into direct and instant involvement
with the information representation), transient (infor-
mation is only displayed temporarily, and is easily dis-
missed), close to the users’ focus (the information is
shown close to the region of focus in the display), and
contextual (the information is related to the user’s cur-
rent focus of attention). Other researchers have sup-
ported this idea. For instance, based on the
observation that a particular design of a permanent
visualization may be suitable only in some scenarios,
Baudisch et al.7 recommended that users should be
allowed to bring up different visualizations on
demand depending on their particular needs.

Earlier work has applied related ideas of transient
representations of information and lightweight inter-
action. For instance, Excentric Labeling provides

labels for a neighborhood of objects located around
the cursor.8 By showing labels temporarily when the
cursor stays over an area for more than a second, the
technique avoids information clutter and the need for
extensive navigation. Side Views uses transient views to
provide dynamic previews of multiple commands by
visualizing the outcome of commands on the current
selection, for instance using bold, italic, or underline
on selected text.9 Zellweger et al.10 studied the impact
of lightweight, animated glosses for link anchors
on hypertext browsing. Altogether, these transient
preview techniques help users to probe relevant infor-
mation without navigation and display switching, and
to assess possible actions without resorting to ‘trial-
and-undo.’

Context menus that pop up near the mouse cursor or
text caret present commands related to the current
focus (e.g., for changing the font of selected text).
Hotbox extends context menus with multiple menu
bars close to the cursor and with access to additional
menus via mouse gestures.11 See-through tools are
another technique that provides close and contextual
access to commands without requiring permanent use
of display space.12

Many information visualizations use brushing to
highlight (or otherwise affect) instances in other views
of an object that the user brushes over.13 Highlighting
techniques have been adopted, for example, in the
Eclipse Java source code editor, where the caret can
be placed in a variable to highlight all references in
the code to that variable. Similar ideas have been dem-
onstrated in spreadsheets.14 These techniques provide
immediate and non-intrusive visualizations through
lightweight interaction.

Novel interaction techniques have been generated to
temporarily bring objects that are otherwise hard to
interact with closer to the user. The interaction tech-
nique for large displays called Vacuum helps reach
remote objects through proxies that are transiently
placed close to the cursor for easy manipulation, reduc-
ing the physical demands on the user.15 Similar chal-
lenges in small displays have brought about techniques
to visualize and navigate to off-screen targets with
halos and proxies.16

Despite the motivations for transient visualizations
mentioned above, the use of transient visualizations
has, to our knowledge, only been empirically investi-
gated in an experimental study of overview+detail
map interfaces.4 That study showed how participants
preferred a transient overview, which appeared tem-
porarily close to the mouse cursor, compared to a
fixed overview, which was shown permanently in the
corner of the display. Thus, we proceed to experimen-
tally compare interfaces in the much more complex
domain of programming and in a much longer term

152 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


experiment than that reported in Jakobsen and
Hornbæk.4

T r ansie nt and p e r m an e nt fish eye vie ws
To investigate how transient visualizations can be used
in complex work settings such as programming, we
implemented a transient fisheye view of source code
in Eclipse, a widespread development environment
(Figure 1). The fisheye view divides the window of
the Java editor into a focus area and a context view.
The focus area, the editable part of the window, is
reduced to make room for the context view. The con-
text view uses a fixed amount of space above and
below the focus area. It contains a distorted view of
source code in which parts of the source code that are
of less relevance, given the user’s focus in the code, are
elided. The transient fisheye view is compared to a
permanent fisheye view (using the same method for

producing the fisheye view as in the transient view)
and to a baseline linear view.

Fisheye view of source code

Before we present the experiment, we describe the fish-
eye views of source code used in the experiment.

Degree of interest. A DOI is determined for each line
in the source code file. Lines in the context view are
then elided if their DOI is below a threshold k. The
DOI of a program line x given the focus point p
(defined as the lines in the focus area) is calculated as:

DOIðx pj Þ ¼ enclosing ðx, pÞ þ occurrences ðxÞ
% dlineðx, pÞ

First, lines are interesting if they contain declara-
tions or statements that structurally enclose the code
that is visible in the focus area. Such lines contain a

F igu r e 1. Transient fisheye view called up in Eclipse to divide the Java editor window into a focus area and a context view.
Lines containing occurrences of a selected variable are shown in the context view and in the overview ruler to the right of
the scrollbar (as white rectangles).

Jakobsen and Hornbæk 153

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


package, class, interface or method declaration, or one
of the keywords for, if, while, switch, etc. If line x is
such a line and it defines a block that encloses the code
in the focus area p, then enclosing(x, p)¼ k.

Second, lines that are semantically related to the
code in focus may be interesting to the user. The Java
editor in Eclipse allows programmers to highlight
occurrences of a variable, method, or type to better
see where it is referenced. For instance, a variable can
be selected by placing the caret in the variable name,
whereby all references to that variable are highlighted
in the source code. Lines containing such highlighted
occurrences of a selected element are interesting.
Further, lines that contain declarations of methods
that enclose these occurrences are also of interest
since they provide context for the occurrences. Thus,
occurrences(x)¼ k adds to the DOI of line x that con-
tains an annotation or declares a method that encloses
an annotation.

Third, a distance dline(x, p) 2 [0; k] proportional to
the number of program lines from line x to focus area p
detracts from that line’s DOI.

Similar to the DOI-function used in Jakobsen and
Hornbæk,5 this DOI-function is composed of both syn-
tactic distance (the enclosing component) and semantic
distance (the occurrences component). Also, syntactic
distance is defined in terms of the abstract syntax tree
(AST) of the source code file, like in Jakobsen and
Hornbæk,5 but in a simpler way: enclosing(x, p) is a
binary function that returns k only if the node x is on
the path from the focus node p to the root of the AST,
otherwise enclosing(x, p) returns 0. The rationale for
this simplification of the DOI-function is to make it
easier to understand what lines are shown in the context
view.

Source code elision in the context view. Lines
are included in the context view if they have a
DOI above the threshold k. If there are not enough
lines with DOI> k to use all the space available
in the context view, lines with DOI& k are added
to the context view in descending order of DOI.
This includes lines that are directly adjacent to the
focus area.

Placing the caret in a variable may cause many lines
to have DOI> k because they contain highlighted
occurrences of the selected variable. Similarly, in
code that is heavily indented, many lines may have a
high DOI because they contain declarations or state-
ments that structurally enclose the code in the focus
area. However, all lines cannot be shown simulta-
neously in the fixed amount of space of the context
view. Clipping or magnifying lines in the context
view may result in some lines becoming unreadable,
yet all lines may be important to the user. Thus, to

guarantee users that the context view contains all lines
that are important, the windows containing the upper
and lower context views can be scrolled. The context
view automatically scrolls to show lines closest to the
focus area (i.e., those lines with the highest DOI) when
its contents change.

To sum up, we compare the fisheye interface to that
of Jakobsen and Hornbæk.5 The present fisheye inter-
face shows program lines at a fixed readable font size
and guarantees that a line x is included in the context
view if it structurally encloses the code that is visible in
the focus area (enclosing(x, p)¼ k) or if it is semanti-
cally related to the focus by containing an occurrence of
a selected element (occurrences(x, p)¼ k). In contrast,
the fisheye interface studied in Jakobsen and Hornbæk5

reduces the size of the least interesting lines, whereby
some lines that structurally enclose the code in the
focus area or are semantically related to the focus can
become unreadable.

Interfaces

Three interfaces to a Java editor were used in the
experiment (Figure 2). The three interfaces all contain
syntax highlighting, line numbers, and the highlighting
of occurrences, which was described above. The inter-
faces also include an overview ruler next to the editor’s
scrollbar, in which highlighted occurrences are shown
as white rectangles. Clicking on a white rectangle
jumps to the line containing the occurrence and
places the caret at that line. The part of the document
shown in the editor window is visually connected with
its position in the overview ruler by curved lines. All
features except those described above are disabled in
the Java editor. Below we describe each of the three
interfaces in turn.

The Permanent interface contains a fisheye view of
source code. The editor window is permanently
divided into a focus area and a context view – per-
manently transforming the view of the visual struc-
ture of information is the typical implementation of
fisheye and focus+ context interfaces. The user can
interact with the focus area like a normal editor. The
caret can be moved within the bounds of the focus
area, scrolling the view contents when moving the
caret against the upper or lower bound. The context
area uses one-third of the display space in the editor
window. However, the context view automatically
reduces in size near the top and bottom of the docu-
ment. Near the top of the document, for example,
when the user scrolls by holding an arrow key to
move the caret past the upper edge of the focus
area, the upper part of the context view retracts.
Clicking on a line in the context view jumps to that
line and places the caret at the line.

154 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


The Transient interface contains a linear view of
source code, but allows the user to call up a transient
fisheye view. The user calls up the context view with a
keyboard shortcut. The context view remains visible
until the user either hits Esc, clicks outside the context
view, or clicks on a line in the context view. Clicking on
a line in the context view jumps to that line and places
the caret at the line. Alternatively, the user can use the
arrow keys to select a line in the context view and jump
to that line by hitting return.

One general characteristic of transient visualizations
is that they involve no permanent use of display space,
because information is only shown temporarily and is
easily dismissed.4 When the user calls up the context
view in the Transient interface, we hypothesize that
information in the focus area is less important because
the user shifts their attention to the context view. We
therefore think that it is useful to show a larger context
view in the Transient interface that uses more display
space than in the Permanent interface, so as to allow
more lines to be visible simultaneously in the context
view of the Transient interface than the Permanent
interface. The ratio of focus area size to context view
size is therefore 2 to 3 in the Transient interface,
whereas the ratio is 3 to 2 in the Permanent interface
(compare Figure 2(a) and (b)). While this confounds
context view size with transience, we think it is the
best implementation of the Transient interface.

The Baseline interface contains a linear view of
source code similar to the normal Java editor in
Eclipse.

E xp e r im e nt
The main aim of the experiment is to compare a tran-
sient visualization to a permanent visualization in a
more complex domain than has previously been
researched.4 A secondary aim of the experiment is to
extend on findings from an earlier evaluation of a fish-
eye view of source code.5 The present experiment rep-
licates the study by Jakobsen and Hornbæk5 in that a
fisheye interface is compared with a baseline interface
using similar types of task. However, compared to the
earlier study of Jakobsen and Hornbæk,5 this study
investigates longer term use of the interfaces. Also,
the fisheye interface used in this study implemented
changes addressing some of the issues discussed in the
earlier study.

Participants

The 14 participants (one female) were graduate stu-
dents in computer science enrolled at the authors’
department. They were between 24 and 44 years of
age (M¼ 30.1). Participants were given course credit
as an incentive for participating in the experiment.

Participants were asked how long they had spent
programming in general or in an object-oriented lan-
guage (less than 1 year, 1–3 years, 3–5 years, or more
than 5 years). The programming experience distribution
of the participants is shown in Figure 3(a). All had at
least 1 year of experience with programming in an
object-oriented language and all but two participants

F igu r e 2. The three Java editor interfaces used in the experiment: (a) Permanent interface in which the context view is
permanently shown, (b) Transient interface in which the context view has been temporarily called up – otherwise it looks
like the Baseline interface – and (c) Baseline interface that shows a linear representation of code. Dashed rectangles are
added to emphasize the difference between the context views used in the interfaces.

Jakobsen and Hornbæk 155

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


had experience with Java. Participants were also asked
whether they had used Eclipse or programmed in Java
before, and if so, how long ago they had last done so,
see Figure 3(b). Half of the participants had used
Eclipse before, but only one had used Eclipse within
the last month.

Tasks

Two sets of tasks were used in the experiment, both
involving navigation and understanding of source
code. Program investigation tasks involve varied navi-
gation and understanding activity as part of investigat-
ing the source code of a program. Program
investigation tasks are of relatively high complexity in
that they vary in the degree of structure, concreteness of
the answer, number of paths to the answer, and the
amount of information needed to answer the task.
Controlled tasks included five specific types of naviga-
tion and understanding task. Controlled tasks are of
relatively low complexity in that they are well struc-
tured, have a single path to a single precise answer,
and limited information is needed to answer the task.

Program investigation tasks were included to see
how participants used the interfaces during varied pro-
gram investigation activity that includes reading code
and switching between different files. Because these
tasks are ambiguous, containing several paths to an
answer, they aim for variation in participants’

approaches to seeking the information they need to
answer the tasks. Therefore, they allowed us to com-
pare how participants performed tasks with the inter-
faces only at a high level. In contrast, controlled tasks
focus specifically on navigation and understanding,
that is, programming activity for which fisheye inter-
faces may be particularly useful. Because these tasks
focus on specific aspects of source code navigation
and understanding in obtaining a single answer, they
allowed us to compare in detail how participants inter-
acted with the interfaces to provide the answer. Below
we describe each set of tasks in detail.

Program investigation tasks. The program investiga-
tion tasks required participants to investigate the
source code of an open source graphics program.
Participants could browse all files comprising the
source code of the program, but since we focus on the
interaction with the editor, we provided names of par-
ticular source files in the tasks as a starting point.
Participants were not able to run the programs in the
experiment, but were handed a screenshot of the main
window of the program to provide context for the
tasks.

These tasks used source code from three open
source programs: 11 tasks used TinyUML (tinyuml-
0.13_02-src.zip downloaded from http://sourcefor-
ge.net/projects/tinyuml/ contained 18K-LOC), 11
tasks used JDraw (jdraw_v11.5.src.zip downloaded

F igu r e 3. Programming experience of the participants as described by their answers to questions about (a) how long they
had spent programming and (b) how long ago they had last used Eclipse or programmed in Java.

156 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


from http://jdraw.sourceforge.net/ contained 23K-
LOC) and 10 tasks used Magelan (magelan-1-3.zip
downloaded from http://sourceforge.net/projects/
magelan/ contained 39K-LOC).

Table 1 gives examples of program investigation
tasks for TinyUML (T1, T2, T3), JDraw (J2, J5, J7),
and Magelan (M4, M6, M7). Some tasks called for a
relatively precise answer (e.g., T3, M6), other tasks
called for higher level explanations (e.g., T1, T2, J7,
M7), and some called for both precise and high-level
answers (e.g., J2, M4). Also, some tasks involved more
than one file (e.g., T1 and M7), whereas others focused
on code in only one file.

The difficulty of program investigation tasks was
aimed at making participants spend about an hour to
complete as many tasks as possible; we did not intend
for all participants to complete all the tasks. We
expected that participants would complete more of
the tasks, coming up with equally good or better
answers using either of the fisheye interfaces than
using the baseline interface.

Controlled tasks. Five types of controlled tasks were
used, each of which involved a particular aspect of nav-
igating or understanding source code. In contrast to

program investigation tasks where participants opened
source files themselves, a source code file was automat-
ically opened in the editor window for each controlled
task. The order in which these types of tasks were used
in the experiment was systematically varied. Tasks were
taken from previous studies of programming activ-
ity.5,17 The five types of task were:

Navigate-method tasks, for instance: ‘In the method
‘hasGreen,’ find the return type of the method that is
called last.’ Only the method name in the task text was
varied between tasks of this type. Participants per-
formed one task of this type with each interface.

Determine-control-structure tasks involved the con-
trol structure within a single method. For instance, a
task concerned with counting enclosing statements
read: ‘In the method ‘mergeTermInfos’ (line 201–238),
how many for, while and if/else statements enclose line
233?’ Another task of this type involved finding the
closing brace of a block. Participants performed two
tasks of this type with each interface.

Determine-dependencies tasks that required deter-
mining references to a particular variable or calls to a
particular method, for instance: ‘How many methods in
this file contain calls to ‘computeProposals’ declared on
line 470?’ Participants performed two tasks of this type

Tabl e 1. Examples of program investigation tasks for the three open source programs used in the experiment: TinyUML
(tasks labeled T1, T2, T3), JDraw (J2, J5, J7), and Magelan (M4, M6, M7)

T1 Classes AbstractNode and AbstractConnection (in org.tinyuml.draw) are diagram elements.

What is the field parent used for in the two classes?

T2 AbstractConnection (in org.tinyuml.draw) contains a field isValid.

From inspecting this class, what makes a connection valid or invalid?

T3 DrawingContextImpl.java (package org.tinyuml.draw) uses shapeFactory to provide shapes.

Type the name of the methods in the class that use a dashed stroke for drawing.
Apart from strokes, what classes of object are obtained from shapeFactory?

J2 Of the methods in FolderPanel.java (package jdomain.jdraw.gui) that call one or more methods on frameFolder,
name those that also call frameChanged().

Why do not all methods call frameChanged() after calling methods on frameFolder?

J5 PalettePanel (package jdomain.jdraw.gui) contains rows of eight-colored squares. Clicking on a square in the
panel selects a foreground or a background color.

Name the class that draws colors as squares in the PalettePanel and explain where a color selection is stored
when clicking on a square.

J7 ColourEntry.java (jdomain.jdraw.data) has an invalidate() method.

What can make a ColourEntry valid, once it is invalid?

M4 In DefaultDrawingEditor.java (package magelan.core.editor), the field mode describes the current mouse
action state.

When is SELECT mode IVItiated and in what program line does this happen?
What happens when clicking on an entity modifier when in SELECT mode?

M6 The Hatch class has a style field that affects how the entity is painted.

What styles are defined in Hatch and which of them supports line styles?

M7 For each of the entity classes Circle and ImageEntity:

How many EntityModifiers do they each have and how do they modify the entity?

Jakobsen and Hornbæk 157

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


with each interface, one task concerning variable refer-
ences and one task concerning method calls.

Determine-field-encapsulation tasks involved deter-
mining whether or not two variables in a class have
corresponding get- and set-methods defined, for
instance: ‘How many of the fields ‘fText’ and ‘fFont’
have both a get-method and a set-method imple-
mented?’ Only the names of the fields in the task text
were varied in these tasks. Participants performed one
task of this type with each interface.

Determine-delocalization tasks involved determining
delocalization in the source code, for example: ‘The
method ‘update’ (line 207–214) contains six method
calls. How many of the methods called are declared
in this file (that is, excluding inherited methods)?’
Participants performed two tasks of this type with
each interface, one task involving variable references
and one task involving method calls.

Overall, we expected participants to complete con-
trolled tasks faster using the Permanent interface or
the Transient interface than using the Baseline
interface.

Materials

The experiment was conducted in a laboratory with six
identical computers with 1999 CRT monitors at a reso-
lution of 12803 1024. On each computer, Eclipse was
set up with its window using all available screen space.
Tasks were presented in a task view to the left of the
editor in Eclipse (Figure 1). Participants typed their
answer to the tasks in the task view and clicked a
button to continue. In the set of program investigation
tasks, the Eclipse window was configured to contain a
Package Explorer view above the task view to the left of
the editor. In the set of controlled tasks, the Eclipse-
window was configured to contain only the editor
window and the task view. In all interfaces, the editor
window contained 50 lines of text and was 100 charac-
ters wide. Before each set of tasks, Eclipse was auto-
matically configured with a workspace containing only

the source code files used for those tasks so that partic-
ipants could not inadvertently view files that were used
in subsequent tasks.

Design. A within-subjects design was used with inter-
face (Permanent, Transient, Baseline) as an indepen-
dent factor. We wanted each participant to use all
three interfaces for at least one hour each. To avoid
tiring out participants, the experiment was divided
into three blocks to take place on separate days
(Figure 4). In each block, participants used one of the
three interfaces. The order of interface was systemati-
cally varied across participants so as to reduce the influ-
ence of learning effects. Also, we systematically varied
the order of controlled task types; we wanted to be able
to compare the results with those of Jakobsen and
Hornbæk.5 In contrast, participants performed pro-
gram investigation tasks before controlled tasks in the
experiment. We were not comparing program investi-
gation tasks with controlled tasks as an independent
variable, and thus control for learning effects was not
required. In fact, the fixed order gave participants time
to learn to use the interfaces before performing the con-
trolled tasks. Jakobsen and Hornbæk5 found that the
fisheye interface might require more time to use effec-
tively, and we thus expected more time to learn to use
the interfaces before performing the controlled tasks
would increase the reliability of the results in those
tasks.

Procedure. In each block of the experiment, partici-
pants were first given an introduction to the interface
they were about to use. The introduction included a
written explanation of the interface and exercises to
try the interface. Then, participants performed a set
of program investigation tasks. If participants had
not finished in 55 minutes, a message dialog informed
participants they had five minutes to complete the cur-
rent task. After the first set of tasks, participants were
allowed a break and then continued to perform con-
trolled tasks. For these tasks, participants were

F igu r e 4. The experimental design in which interface was varied between the three blocks.

158 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


instructed to give correct answers as quickly as possible.
Participants completed eight training tasks and eight
test tasks, and were then administered a questionnaire
about the interface just used. The questionnaire
included six questions from QUIS18 and two questions
asking about strengths and drawbacks of the interface.
After completing the third block of the experiment,
participants received a questionnaire asking them to
compare the three interfaces and rank them in the
order of their preference. The questionnaire also
asked the participants for their age, gender, and pro-
gramming experience.

The experiment was conducted over a period of one
week and lasted between four and six hours per partic-
ipant. Participants met in the laboratory on three dif-
ferent weekdays for each of the three blocks of the
experiment, except one participant completed two
blocks in one day. Because participants had busy sched-
ules, only few participants met in the laboratory on
three consecutive days: we did not control for variation
in when participants completed each block, but there
were three days at the most between two blocks. Up to
six participants were present in the laboratory at a time.
Participants were seated so far apart that they could
not read the displays of other participants. The exper-
imenter was present in the laboratory to answer ques-
tions during the introduction, but otherwise
participants completed the experiment unsupervised.

Participants’ interactions with the interfaces and
answers to tasks were logged. Time used to complete
the tasks is derived from the logged data; answers to the
tasks were also logged and from the logs accuracy could
thus be inferred.

Resu l ts
Results from the experiment include objective data
(task completion times and accuracy) and subjective
data (preference, satisfaction scores, and comments
from participants). We also describe data on partici-
pants’ interaction with the interfaces.

Accuracy and task completion times

We analysed participants’ answers to tasks and comple-
tion times for each of the two sets of task: program
investigation tasks and controlled tasks.

Program investigation tasks. In the first task set com-
prising program investigation tasks, participants pro-
vided 384 answers. Every answer was assigned a score
based on an assessment of how correct and complete
the answer was. Judged by the first author, 100
answers were accurate wherein participants provided
a correct answer that covered all aspects of the task,
151 answers were correct, but missed at least one
aspect of the task, and 35 answers were incorrect in
at least one aspect but were otherwise correct. Scores
3, 2, and 1 were given to these answers. All other tasks
were given a score of 0, including 39 tasks answered
incorrectly, 59 tasks that participants abstained from
answering (e.g., they did not understand the task), and
64 tasks that participants failed to complete within the
55 minutes. Table 2 summarizes the answers given by
participants using the three interfaces. In average, par-
ticipants spent 49 minutes solving program investiga-
tion tasks with each interface. Because of the 55
minutes limit for solving the program investigation
tasks in a block, participants only completed all
tasks in 23 blocks (55%).

There was no difference in the total score of partic-
ipants’ answers with the interfaces, F1,13¼ 0.243, ns.
If anything, participants appeared to complete fewer
tasks using the Transient interface than Permanent or
Baseline.

Table 3 presents average completion times for pro-
gram investigation tasks where participants completed
all tasks within the time limit. For tasks where partic-
ipants completed all tasks within the time limit, com-
pletion times with the interfaces differed significantly,
F2,243¼ 4.34, p< 0.05. Although participants appeared
to complete fewer tasks using the Transient interface,
participants who completed all tasks spent less time
with Transient compared with Permanent (p< 0.05

Tabl e 2. Summary of answers given to program investigation tasks using the three interfaces

Score Baseline Permanent Transient Total

Accurate 3 34 32 34 100

Correct, but incomplete 2 53 55 43 151

Partly incorrect 1 13 11 11 35

Incorrect 0 11 12 16 39

Abstained 0 21 22 16 59

Tasks not completed (no time) 0 18 17 29 64

Participants completing all tasks
(number of tasks)

10 (106) 6 (64) 7 (74) 23 (244)

Jakobsen and Hornbæk 159

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


in Bonferroni adjusted post hoc tests). Completion
times did not differ significantly between Transient
and Baseline.

Controlled tasks. In the second task set, participants
completed 336 controlled tasks. Data from 25 tasks
were discarded from our analysis because participants
did not appear to understand the question (7), wrote
ambiguous answers (5), or wrote verbose answers (12).
We could not correct any misunderstandings that par-
ticipants might have during the training tasks because
participants completed the tasks unsupervised.
Finally, an outlier that was more than three times
above the inter-quartile range for completion time
was discarded. The analysis below comprises the
remaining 311 tasks.

Overall, 85% of the controlled tasks were answered
correctly. The accuracy for different types of task is
summarized in Table 4. There was no difference in
accuracy with the three interfaces, F1,13¼ 0.089, ns.

Task completion times were not different between
interfaces, F1,13¼ 0.310, ns. Average task completion
times are summarized in Table 5. While interface was
found to interact with task type, F1,13¼ 2.19, p< 0.05,
there were no significant differences in completion
times with the interfaces for any type of task. Below,
we compare task-specific completion times with those
of Jakobsen and Hornbæk.5

For Navigate-method tasks, participants tended to
perform slower using Permanent (M¼ 43.4 s) or
Transient (M¼ 44.1 s) than Baseline (M¼ 38.3 s),
whereas Jakobsen and Hornbæk5 found the fisheye
interface to be significantly faster than a baseline
linear interface in those tasks. A possible explanation
is that the Baseline interface in this study showed high-
lighted occurrences in the overview ruler.

For Determine-control-structure tasks, participants
spent about the same time with Permanent
(M¼ 38.1 s) and Baseline (M¼ 37.9 s). In the study
of Jakobsen and Hornbæk,5 participants tended to
perform slower for similar tasks that involved finding
the closing brace of an enclosing statement. Closing
braces were not visible in the context area in that
study, whereas braces were visible in the context
view in this study. Participants tended to perform
slower using Transient (M¼ 44.1 s) compared with
Permanent.

For Determine-dependencies tasks, Transient
(M¼ 49.1 s) seemed faster than Baseline (M¼ 55.1 s),
which in turn seemed faster than Permanent
(M¼ 55.1 s). This type of task was not included in the
study of Jakobsen and Hornbæk.5

For Determine-field-encapsulation tasks, partici-
pants seemed to spend more time using Transient
(M¼ 43.1 s) compared with Permanent (M¼ 36.5 s)
and Baseline (M¼ 37.6 s). One possible explanation
that Transient might have been slower is that the

Tabl e 4. Average accuracy with the three interfaces for the different types of controlled task. Columns for each interface
show number of tasks completed (N), and mean accuracy (M) and standard deviation (SD) in percentage of tasks com-
pleted correctly

Baseline Permanent Transient

Task type N M (%) SD (%) N M (%) SD (%) N M (%) SD (%)

Navigate-method 13 92 28 13 100 0 12 100 0

Determine-control-structure 24 96 20 24 100 0 24 96 20

Determine-dependencies 28 71 46 27 81 40 27 81 40

Determine-field-encapsulation 14 86 36 14 71 47 14 83 38

Determine-delocalization 26 85 37 26 73 45 25 74 44

Average 105 85 36 104 85 36 102 85 36

Tabl e 3. Average task completion times in seconds for program investigation tasks using the three interfaces, where
participants completed all the tasks. Columns for each interface show number of tasks completed (N), mean task
completion time (M), and standard deviation (SD)

Baseline Permanent Transient

N M SD N M SD N M SD

74 248 118 106 267 132 64 210 111

160 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


context view had to be called up for each variable that
participants had to inspect. Whereas this study found
no difference between Permanent and Baseline, partic-
ipants seemed to perform tasks slower using the fisheye
interface compared with the baseline interface in the
study by Jakobsen and Hornbæk.5 Comments by par-
ticipants indicated that the mechanism for showing
semantic relationships, which resulted in frequently
changing relationships being shown, complicated the
use of the fisheye interface in their study. Although
the differences are not statistically significant, we take
this as an indication that highlighted occurrences is a
more stable mechanism for showing semantic relation-
ships in the fisheye view.

For Determine-delocalization tasks, Permanent
(M¼ 51.0 s) seemed faster than Transient
(M¼ 59.6 s), which in turn seemed faster than
Baseline (M¼ 64.5 s). This result confirms those of
Jakobsen and Hornbæk5 that found participants to
perform these tasks significantly faster (about 51%)
with the fisheye interface compared with the baseline
interface; however, the difference in this study is smal-
ler and not statistically significant. Similar to
Determine-field-encapsulation tasks, Transient might
have been slower because the context view had to be
called up several times, requiring additional user
efforts.

Satisfaction

After having used all three interfaces, participants
completed a questionnaire to rank the interfaces.
Participants’ ranking of the interfaces differed signifi-
cantly, F1,13¼ 0.035, p< 0.05. Figure 5 shows partici-
pants’ preferences. All but two participants preferred
Permanent or Transient, which is a strong indication
that they found the fisheye view useful. Also, two-
thirds of the participants ranked the Permanent inter-
face first.

Participants rated their satisfaction with the inter-
faces on six questions. Overall, participants’ ratings
varied for the three interfaces, though not significantly
at the 0.05 level as found by a multivariate analysis of
variance, Wilk’s Lambda¼ 0.027, F1,13¼ 1.78,
p¼ 0.069. The main reason for this trend was that
participants rated the interfaces differently only on a
scale from boring to fun (F1,13¼ 4.63, p< 0.05), find-
ing both Permanent and Transient more fun to use
than Baseline (p< 0.05 in Bonferroni adjusted post
hoc tests).

Five participants commented that they liked the
Transient interface because the fisheye view could be
called up temporarily. In contrast, three participants
said about Permanent that it was good that the fisheye
view was there all the time. However, some partici-
pants commented that the fisheye view in Transient
‘disappears too easily – has to call it up several times
to get all the needed information’ and that it was ‘con-
fusing when it disappears.’ One participant who
ranked Baseline as first choice noted in his preference
questionnaire that ‘if the fisheye view [in Transient]
would not disappear all the time, then [Transient]
would be ranked 1.’ Together, these comments suggest
that users may find it useful to be able to switch the
fisheye view on and off on demand, so they can use it
for longer periods of time than is possible with the
short-lived fisheye view in the Transient interface.

Interaction with the interfaces

We analysed the data logged during the experiment to
understand how participants used the interfaces. We
summarized interaction data from program investiga-
tion tasks to measure how participants adopted and
used the context view in the fisheye interfaces. We
visualized the interaction data from controlled tasks
in progression maps (similar to Jakobsen and
Hornbæk5) and analysed these maps to understand
how participants used each interface to solve the

Tabl e 5. Average task completion times with the three interfaces for the different types of controlled task. Columns for
each interface show number of tasks completed (N), and mean task completion times (M) and standard deviation (SD) in
seconds

Baseline Permanent Transient

Task type N M SD N M SD N M SD

Navigate-method 13 38.3 16.8 13 43.4 21.5 12 44.1 20.7

Determine-control-structure 24 37.9 20.4 24 38.1 13.5 24 45.3 21.7

Determine-dependencies 28 55.1 22.6 27 58.6 22.8 27 49.4 26.2

Determine-field-encapsulation 14 37.6 20.0 14 36.5 17.7 14 43.1 26.6

Determine-delocalization 26 64.5 27.7 26 51.0 16.4 25 59.6 23.3

Average 105 49.1 24.9 104 47.1 20.1 102 49.4 24.3

Jakobsen and Hornbæk 161

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


tasks. The progression maps show which part of the
file was visible in the focus area at a given time during
the task (Figure 6). Program lines are mapped to the
y-axis with the first line at the top. Dashed horizontal
lines indicate program lines that hold part of the
answer to the task. Time is mapped to the x-axis.
A solid vertical line indicates that the participant has
completed the task. Symbols in the progression maps
annotate certain types of interaction (e.g., a hand
symbol indicates when the user dragged the scrollbar
thumb; a text caret indicates when the user placed the
caret in the focus area, for instance to highlight a
method; an arrow-in-document symbol indicates
when the user clicked in the context view). Other inter-
action forms are directly discernable from the map,
such as scrolling by page up/down keys. Interpreting
the progression maps is not always straightforward.
For instance, the task shown in Figure 6 involves find-
ing calls to a particular method. The user places the
text caret after 12 seconds and then two more times,
presumably in the method, before scrolling to see the
highlighted occurrences. It is not clear in this task,
however, why the user places the caret three times.
Because program investigation tasks varied in

structure, and in some cases involved multiple files,
we did not use progression maps to analyse those
tasks.

Program investigation tasks. In average, participants
interacted with the context view in 64% of the
program investigation tasks they completed using
the Permanent interface and 70% of the tasks using
the Transient interface. Participants used the context
view to navigate in the code an average of 11 times
across all tasks in a task set, equally often with the
Permanent interface and the Transient interface.
While the context view was always shown in the
Permanent interface, participants had to explicitly call
up the context view to use it in the Transient interface –
they did so 27 times in average across all tasks in a task
set.

Using the Permanent interface, 10 participants
interacted with the context view in more than half
the tasks. Participants may also have looked at infor-
mation in the context view without interacting with it,
but we were unable to determine such use from the
data logged in program investigation tasks. Using
the Transient interface, two participants did not once

F igu r e 6. Progression map for a Determine-dependencies task using Permanent interface.

F igu r e 5. Number of participants ranking each interface as first, second, or third choice (from left to right). For example,
nine participants ranked Permanent as their first choice.

162 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


use the context view, whereas the other 12 participants
used the context view in more than half of the tasks.

Controlled tasks. Analysis of progression maps for
controlled tasks revealed patterns in the participants’
interaction with the interfaces. In all controlled tasks
except for Determine-control-structure tasks, partici-
pants most often selected a method or variable and
used its highlighted occurrences to either navigate
more quickly or to avoid navigating. Figure 7 shows
progression maps that are representative of this type of
interaction using each of the interfaces for completing a
Determine-dependencies task (Figure 7(a)–(c)) and a
Determine-delocalization task (Figure 7(d)–(f)). Using
the Permanent interface or the Transient interface, par-
ticipants could often find the lines in the context view
that contained the answer to the task without navigat-
ing further. This can be seen in the progression map in
Figure 7(a) for a task where the participant must find
calls to a particular method: the view is moved only
once, at the beginning of the task, to bring the line
containing the particular method into view. Next, the
participant selects the method (indicated by the text
caret symbol) and can then find lines containing calls
to the method in the context view. Using the Baseline
interface, participants often seemed to navigate to lines
with highlighted occurrences, which might contain the
answer to the task. This can be seen in the progression
map in Figure 7(c), which shows that the participant,
after having selected the method, scrolls the view using
the mouse to bring each call to the method into view.
Below we describe the different interactions used to
solve the tasks and how frequently they were used by
participants.

Using the Permanent interface, participants were
able to find the answer to 54 of 84 tasks directly in
the context view with minimal navigation
(as described above; Figure 7(a) and (d)). Participants
navigated to occurrences in the context view to find the
answer in six tasks. In contrast, in 24 tasks participants
navigated to occurrences by scrolling or by clicking in
the overview, or they manually searched the file. Using
the Transient interface, participants called up the
context view in 55 of 84 tasks and found the answer
there with minimal navigation (Figure 7(b) and (e)). In
28 tasks, participants navigated to occurrences by scrol-
ling or by clicking in the overview, or they scrolled to
manually search through the file. Using the Baseline
interface, participants completed 68 of 84 tasks by find-
ing occurrences in the overview ruler instead of manu-
ally searching through the file. Often participants then
navigated to occurrences either by scrolling like in
Figure 7(c) (39 tasks), or by clicking in the overview
ruler like in Figure 7(f) (27 tasks). Participants solved
two Determine-delocalization tasks without scrolling or
navigating to occurrences, but seemingly by examining
the white rectangles showing occurrences in the over-
view ruler.

In all interfaces, participants made effective use
of highlighted occurrences for navigating. However,
in Determine-dependencies tasks where partici-
pants should determine which methods contained
value assignments to a particular variable (shown
in Figure 8), all participants using the Baseline inter-
face ended up scrolling to search manually through
the entire file. Similarly, six participants using
Permanent and four using Transient scrolled
through the entire file to solve the task. This was
surprising because all participants navigated

Permanent Transient Baseline

(a) (b) (c)

(d) (e) (f)

F igu r e 7. Progression maps representative of participants’ navigation when using the three interfaces in: (a–c) a
Determine-dependencies task involving method calls and (d–f) a Determine-delocalization task.

Jakobsen and Hornbæk 163

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


effectively using occurrences to solve Determine-
dependencies tasks where they should determine
which methods contained calls to a particular
method (Figure 7(a)–(c)).

Determine-control-structure tasks asked participants
to find the ‘}’-brace that closes a given block, or asked
participants to count the for-, if- and while-statements
that enclose a given line. Using Baseline, participants
had to scroll to find the closing brace or enclosing state-
ments. Using Permanent, six participants found the line
number of the closing brace in the context view whereas
two navigated to the closing brace; seven participants
read enclosing statements in the context view. Using
Transient, five participants called up the context view,
and three of these read the line number whereas two
navigated to the closing brace; nine participants called
up the context view and read the enclosing statements.

Two participants did not once call up the fisheye
view using the Transient interface, and using the
Permanent interface, they seemed to use the fisheye
view only in program investigation tasks. Those two
participants were the only ones with no Java experi-
ence. The three participants who preferred the
Transient interface used the fisheye view in all con-
trolled tasks. In program investigation tasks, two of
these participants used it frequently, whereas one used
it only occasionally.

Discussion
We now relate the findings from our study to previous
research in focus+context interfaces of source code.
We then discuss issues with the transient use of fisheye
interfaces in programming based on our results.

Focus + context interfaces for source code

Results from the study confirm earlier empirical find-
ings in support of fisheye views of source code5 and
code elision17. All but two participants preferred
either the Permanent or Transient interface, which
contained a fisheye view of code, compared with

the Baseline interface, which contained a linear
view. In contrast to Jakobsen and Hornbæk,5 how-
ever, time and accuracy measures were inconclusive.
Data logged during the experiment show that partic-
ipants often used semantic highlighting of related
code. Using either Permanent or Transient interface,
participants could often find the answer directly in
the context view with minimal navigation, whereas
using the Baseline interface, participants had to nav-
igate to find the answer in many of the tasks.
Highlighting might have helped participants navi-
gate faster also in the Baseline interface, especially
by use of the overview ruler. In interpreting our
results, it is therefore important to note that high-
lighting was not included in previous studies of
focus+ context views of source code. However,
highlighting is a common feature in code editors
and therefore perhaps well known to participants.
In contrast, the fisheye view is not well known.
Participants in our study may not have had time in
the study to learn to use it effectively. Even longer
term studies may uncover how fisheye views are used
when fully learned and adopted by users.

More work is needed to better utilize fisheye
interfaces in real-life programming. An advantage of
the fisheye interfaces that automatically change the
view is that users can see parts of the file that are
related to their focus, even if those parts are located
far apart in the file. In practice, programming tasks
involve code in multiple files. A clear limitation of the
fisheye interfaces studied here is that they provide con-
text for the user’s focus only within a single source
code file. A challenge for future work is extending
the fisheye view to provide context across the entire
code base, by integrating code fragments located in
multiple files. Moreover, we have studied fisheye inter-
faces for programming only on displays of moderate
size. The widespread of larger displays begs the ques-
tion how display size influences the usefulness of these
fisheye interfaces. Programmers can view multiple files
on a large display, yet there is a cost to manually
arranging the views (e.g., to view different parts of a

Permanent Transient Baseline

(a) (b) (c)

F igu r e 8. Example progression maps where participants scrolled through the entire file to solve a Determine-depen-
dencies task involving variable assignments.

164 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


source code file). Last, modern programming environ-
ments provide tools for navigating in source code, but
we restricted the tools available in the experiment. In
practice, programmers may choose between multiple
approaches to, for instance, navigate dependencies in
the code. Further work is needed to understand the
benefits that programmers gain from fisheye interfaces
compared with these tools. Issues with existing tools
for navigating in source code, which fisheye interfaces
may alleviate, are ‘loss of context’19 and ‘navigational
overhead’.20

Transient use of a fisheye view

We compared the usability of a transient fisheye view,
which participants could call up temporarily, to a per-
manent fisheye view. The transient fisheye view aimed
to support navigation and understanding while still
providing a large view of source code for other tasks
such as reading and editing. Analysis of participants’
interaction with the interfaces showed effective use of
the fisheye view in both the Permanent interface and the
Transient interface. Also, some participants’ comments
confirm the idea of a fisheye view that can be called up
temporarily. However, only two participants preferred
the Transient interface. From participants’ feedback,
we learned about issues that might have detracted
from the usability of the transient fisheye interface.
Below we discuss these issues and other factors that
might have influenced participants’ use of the transient
fisheye view.

First, results from this study may be contrasted to
the empirical findings of Jakobsen and Hornbæk.4 That
study showed preference for a transient overview,
which appeared temporarily close to the mouse
cursor, compared to a fixed overview, which was
shown permanently in the display. In contrast to the
tasks used by Jakobsen and Hornbæk4, which focused
narrowly on navigation, participants in this study per-
formed more varied tasks in a more complex domain.
For instance, participants used the fisheye view for nav-
igating, but also for understanding relationships in the
code.

Some participants mentioned that the context view
in the Transient interface disappeared too easily. We
suspect this may have been a problem in tasks that
involved determining enclosing statements. These
types of task involved aligning indentation of lines in
the context view to lines in the focus area. In contrast,
we think it is appropriate that the context view disap-
pears after having called up the context view to navi-
gate in the code. However, an interesting alternative,
which was hinted at by some participants’ comments, is
to allow users to switch the fisheye view on and off on
demand.

We hypothesized that the Transient interface would
benefit from a large context view that allowed more
important lines to be visible simultaneously. We had
expected that users would call up the context view to
use the information contained therein, and therefore
not pay much attention to the focus area. However,
several participants commented that the context view
used too much space in the transient fisheye view. In the
experiment, participants may have needed to relate
information in the context view to information located
in a part of the editor window that became hidden by
the context view. One way to minimize the risk of cov-
ering code in the editor with the context view is to place
the context view outside the bounds of the editor
window as far there is display space above and below
the editor window.

We suggest that a transient visualization may sup-
port a specific task more effectively by allowing users to
call up a representation of only the types of information
useful to that task. The fisheye view in the Transient
interface was based on the same DOI function as in the
Permanent interface and thus the fisheye views in the
two interfaces included the same types of information.
In practice, a transient fisheye view of source code
could prove more effective if aimed at helping program-
mers to understand only certain relationships in the
code, and include only lines that show those relation-
ships in the context view. However, more work is
needed to determine how users can more directly con-
trol the focus used in the DOI function underlying the
fisheye view.

Limitations

The experiment has limitations that need to be taken
into account when interpreting the results. We dis-
cuss the tasks, participants, materials, and the proce-
dure used. First, although we included varied
programming tasks, the tasks involved only reading
and navigating in source code, and are thus not rep-
resentative of real-life programming activity.
Participants did not write code or have all the tools
available in modern programming environments at
their disposal. Consequently, our study may have
emphasized tasks for which the fisheye view is parti-
cularly useful and therefore favored the Permanent
interface. Second, only students participated in the
experiment. Although most participants had several
years of programming experience, the results might
not generalize to experienced professional program-
mers. Third, open source programs were used for the
experimental tasks. Although none of the partici-
pants said they had seen the source code for these
programs before, we did not explicitly screen for
this potentially confounding circumstance. Also,

Jakobsen and Hornbæk 165

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


several participants were in the laboratory at the
same time and participants knew each other as stu-
dents. This might have introduced a level of compe-
tition among participants, which could influence the
results. Finally, there is potential bias in participants’
subjective ratings in favor of the fisheye interfaces
because participants might have considered the
experimenter as stakeholder in the fisheye interfaces.
However, such a bias in participants’ ranking of
Permanent and Transient interfaces is unlikely.

Conc l usion
Transient visualizations promise to support specific
contexts of use without making permanent changes
to the user interface. To further understand how tran-
sient visualization can be used to support complex
work, we have designed and evaluated an interface
with a transient fisheye view of source code that
users can call up temporarily. In a user study, we com-
pared the transient fisheye interface with a permanent
fisheye interface and a baseline interface. Fourteen
participants performed tasks of both high and low
complexity.

Results from the user study showed that all but two
participants preferred either of the interfaces contain-
ing a fisheye view compared to the baseline interface.
This supports results from earlier studies of source
code views.5,17 The transient fisheye view aimed at
supporting navigation and understanding tasks while
still providing a large view of source code for reading
and editing. However, participants preferred a perma-
nent fisheye view to the transient fisheye view. No
clear differences in task completion times and accu-
racy were found, and analysis of participants’ interac-
tion showed that the fisheye view was used equally
often in permanent and transient conditions.
Participants’ comments indicate subtle issues with
the transient fisheye interface that might have
detracted from its usability.

We have concluded by proposing ideas to improve
transient use of fisheye views in existing user inter-
faces. For instance, when temporarily called up, the
context view may be extended to use display space
adjacent to the existing view so as to avoid hiding
information in the user’s focus of attention. Also, we
propose using a DOI function that focuses narrowly
on information important in a specific task; a transient
fisheye view tailored for a specific task may increase its
effectiveness.

Re f e r e nces
1. Card SK, Mackinlay JD and Shneiderman B. Readings in

Information Visualization: Using Vision to Think. San Diego,
CA: Academic Press, 1999.

2. Eick SG, Steffen JL and Sumner EE. SeeSoft: a tool for visual-
izing line oriented statistics software. IEEE Trans Software Eng
1992; 18: 957–968.

3. Robertson GG and Mackinlay JD. The document lens. UIST
’93: Proceedings of the 6th Annual ACM Symposium on User
Interface Software and Technology (Atlanta, Georgia), ACM:
New York, 1993; 101–108.

4. Jakobsen MR and Hornbæk K. Transient visualizations. OZCHI
’07: Proceedings of the 19th Australasian Conference on
Computer-Human Interaction (Adelaide, Australia), ACM: New
York, 2007; 69–76.

5. Jakobsen MR and Hornbæk K. Evaluating a fisheye view of
source code. CHI ’06: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Montréal, Québec,
Canada), ACM Press: New York, 2006; 377–386.

6. Furnas GW. The fisheye view: a new look at structured files. Bell
Laboratories Technical Memorandum #81-11221-9, 1981.

7. Baudisch P, Lee B and Hanna L. Fishnet, a Esheye web browser
with search term popouts: a comparative evaluation with over-
view and linear view. AVI ’04: Proceedings of the Working
Conference on Advanced Visual Interfaces (Gallipoli, Italy),
ACM Press: New York, 2004; 133–140.

8. Fekete J and Plaisant C. Excentric labeling: dynamic neighbor-
hood labeling for data visualization. CHI ’99: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(Pittsburgh, PA), ACM Press: New York, 1999; 512–519.

9. Terry M and Mynatt ED. Side views: persistent, on-demand pre-
views for open-ended tasks. UIST ’02: Proceedings of the 15th
Annual ACM Symposium on User Interface Software
and Technology (Paris, France), ACM Press: New York, 2002;
71–80.

10. Zellweger PT, Regli SH, Mackinlay JD and Chang B. The impact
of fluid documents on reading and browsing: an observational
study. CHI ’00: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (Hague, Netherlands),
ACM Press: New York, 2000; 249–256.

11. Kurtenbach G, Fitzmaurice GW, Owen RN and Baudel T. The
Hotbox: efficient access to a large number of menu-items. CHI
’99: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Pittsburgh, PA), ACM Press: New York,
1999; 231–237.

12. Bier EA, Stone MC, Pier K, Buxton W and DeRose TD.
Toolglass and magic lenses: the see-through interface.
SIGGRAPH ’93: Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques (Anaheim, CA),
ACM Press: New York, 1993; 73–80.

13. Becker RA and Cleveland WS. Brushing Scatterplots. In: Meeker
Jr WQ (ed.) Technometrics. Vol. 29, Alexandria, VA: American
Society for Quality Control and American Statistical
Association, 1987, pp.127–142.

14. Igarashi T, Mackinlay JD, Chang B and Zellweger PT. Fluid
Visualization of Spreadsheet Structures. VL ’98: Proceedings of
the IEEE Symposium on Visual Languages (Halifax NS, Canada),
IEEE Computer Society: Los Alamitos, 1998; 118–125.

15. Bezerianos A and Balakrishnan R. The vacuum: facilitating the
manipulation of distant objects. CHI ’05: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(Portland, Oregon), ACM Press: New York, 2005; 361–370.

16. Irani P, Gutwin C and Yang XD. Improving selection of off-
screen targets with hopping. CHI ’06: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(Montréal, Québec, Canada), ACM: New York, 2006; 299–308.

17. Cockburn A and Smith M. Hidden messages: evaluating the effi-
ciency of code elision in program navigation. Interact Comput
2003; 15(3): 387–407.

166 Information Visualization 11(2)

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/


18. Chin JP, Virginia A and Norman KL. Development of an instru-
ment measuring user satisfaction of the human-computer inter-
face. CHI ’88: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (Washington, DC), ACM Press:
New York, 1988; 213–218.

19. Alwis B and Murphy GC. Using visual momentum to explain
disorientation in the Eclipse IDE. IEEE Symposium on Visual

Languages and Human-Centric Computing (VL/HCC)
(Brighton, UK), IEEE: Los Alamitos, 2006; 51–54.

20. Ko AJ, Coblenz MJ and Aung HH. An exploratory study of how
developers seek, relate, and collect relevant information during
software maintenance tasks. IEEE Trans Software Eng 2006;
32(12): 971–987.

Jakobsen and Hornbæk 167

 at Copenhagen University Library on June 10, 2012ivi.sagepub.comDownloaded from 

http://ivi.sagepub.com/

