
Use Case Evaluation (UCE): A Method for Early
Usability Evaluation in Software Development

Kasper Hornbæk1, Rune Thaarup Høegh2, Michael Bach Pedersen3 and Jan Stage2

1 University of Copenhagen, Department of Computer Science, Universitetsparken 1,
DK-2100 Copenhagen, Denmark

2 Aalborg University, Department of Computer Science, Fredrik Bajers Vej 7,
DK-9220 Aalborg East, Denmark

3 ETI A/S, Bouet Moellevej 3-5, DK-9400 Nørresundby, Denmark
kash@diku.dk, runethh@cs.aau.dk, mbpedersen@gmail.com, jans@cs.aau.dk

Abstract. It is often argued that usability problems should be identified as early
as possible during software development, but many usability evaluation
methods do not fit well in early development activities. We propose a method
for usability evaluation of use cases, a widely used representation of design
ideas produced early in software development processes. The method proceeds
by systematic inspection of use cases with reference to a set of guidelines for
usable design. To validate the method, four evaluators inspected a set of use
cases for a health care application. The usability problems predicted by the
evaluators were compared to the result of a conventional think-aloud test.
About one fourth of the problems were identified by both think-aloud testing
and use case inspection; about half of the predicted problems not found by
think-aloud testing were assessed as providing useful input to early
development. Qualitative data on the evaluators’ experience using the method
are also presented. On this background, we argue that use case inspection has a
promising potential and discuss its limitations.

Keywords: Usability evaluation, use cases, software development

1 Introduction

Usability evaluation has established itself as an indispensable part of the development
of interactive computer applications. A broad variety of methods have been proposed
to support evaluators in conducting usability evaluations; Dumas [11] and Cockton et
al. [7] present overviews of recent developments. Simultaneously, practice appears to
change as more development organizations begins to work focused with usability [2].

Despite these developments, most usability work takes place late in the software
development process. Deferring usability work in this way ignores the general
observation that faults in software, including usability problems, are much cheaper to
solve early in the development cycle [2,26]. Identifying usability problems early,
however, is difficult with the current software development practice because usability
work is usually separated from core software development activities.

Use cases have been suggested as a valuable means for integrating usability
engineering directly into the software development process [10,12]. Use cases are
often available early in the development of an interactive system, and are relevant
both to software development and user interface design. Though scenarios have many
of the same characteristics as use cases, use cases are typically considered more
specific and detailed than scenarios (e.g., when described as suggested by Cockburn
[5]) and form part of many mainstream development methodologies. Therefore, they
form a potentially suitable basis for conducting usability evaluation on an early
software development product.

In this paper, we present an evaluation method called Use Case Evaluation (UCE)
tailored for usability evaluation based on use cases. Our aim is to facilitate
identification of usability problems at the point in the development process where the
first key use cases are described. This will also help integrating usability engineering
into the development cycle. In order to evaluate the effectiveness of this method, we
compare it to a baseline think-aloud test. In Section 2, we give an overview of work
with early usability evaluation. Section 3 presents the UCE method. In Section 4, we
describe a study designed to validate the method; Section 5 describes the results of the
study. Section 6 discusses the results in a broader context and Section 7 provides the
conclusion.

2 Related Work

The literature on usability evaluation discusses a variety of design products that may
be evaluated early, such as prototypes [39], scenarios [14], storyboards [17], and
interface specifications [24]. Among these, use cases and scenarios are two prominent
approaches with several desirable characteristics. They are often available early in the
development of an interactive system. They also form the cornerstone of several
development methodologies, such as the Unified Software Development Process [21]
or scenario-based development. In particular for use cases, several authors argue that
they provide a strong connection between the fields of software development and user
interface design [10,35]. Ferré et al. [12] argued that use cases offer a good starting
point for integrating usability techniques into a software engineering process, with the
additional benefit that they are understandable from both fields. Below we discuss in
more detail the literature on use cases and scenarios.

A use case is a description of a system’s behavior as it responds to requests from
an actor who wants to achieve a particular goal, or, following Bittner and Spence [3],
a description of a sequence of events that leads to a system doing something useful.
Use cases were developed by Jacobsen [20] and are currently widely employed to
capture the functional requirements of a system. They are typically expressed in
ordinary language, avoiding technical jargon and description of the internal workings
of a system. However, since use cases were introduced, countless variations on how
to describe them have been proposed [5]. Constantine and Lockwood [10] described
essential use cases, which are free of technology and implementation detail. An
essential use case describes a complete, meaningful, and well-defined task of interest
to the user. Any design decisions, especially those related to the user interface, are

deferred and abstracted. Real use cases, as described by Larman [28], contain
concrete design suggestions. Cockburn [5] has also proposed variations on how a use
case should be written, including variations in degree of formality of the description,
the role of illustrations, and the status of non-functional requirements.

A related stream of research focuses on scenarios. Scenarios originate from
strategic management methodology and have since spread to human-computer
interaction and software engineering [23]. Scenarios offer an early and systematic
approach to describe users’ work. Part of Carroll’s [4] definition of scenarios state
that it is a: “… description sufficiently detailed so that design implications can be
inferred and reasoned about”. Hertzum [15] has portrayed how scenarios have been
used by software developers in real-world projects. He found that scenarios offered a
meaningful sequence of events and activities to the developers in the initial phases of
the analysis and design process, and that they assisted in preserving a real-world and
recognizable feel when trying to understand how users work.

Few studies deal with usability evaluation based on scenarios or use cases.
Scenario-based evaluation was investigated by Haynes et al. [14] in relation to
CSCW, where it helped identify factors that impacted the system’s chance of success.
A number of authors propose techniques to assess the quality of use cases. Tao [37]
proposed an approach based on defining a behavioural model, expressed as a state
machine, which focuses on the flow of interaction between the user and the system as
the user is carrying out a task. He suggests usability principles that can be used as
guidance for evaluating the behavioural model. Anda and Sjøberg [1] identified
typical defects in use cases and present a checklist for finding such defects. In
addition, they proposed an inspection technique based on the checklist. The defects
are general and deal with unclear or incorrectly expressed use cases, and not with
specific usability problems. Jagielska et al. [22] also worked with assessment of use
cases. They saw uses cases as expressions in natural language, and based on an
analysis of a number of use cases, they suggested guidelines for writing use cases that
are easier to understand. Van der Poll et al. [38] employed use case maps to check
formal properties of use cases, but only assessed completeness and consistency. Thus
the focus is mainly on the use case itself and not on the system it describes.

3 Use Case Evaluation

Usability evaluation with the Use Case Evaluation (UCE) method consists of three
overall activities, see Fig. 1: (1) Inspection of use cases, (2) Assessment of use cases,
and (3) Documentation of evaluation.

The input for inspection is a collection of use cases describing the use of the
system under development and a brief description of the use context for the system.
We recommended the fully dressed form of use case description proposed by
Cockburn [5]. With fully dressed use cases, evaluators receive as much information as
possible with a use case. In addition, a list of guidelines is required to assist the
inspection. The evaluation product is an assessment of the usability of the system
expressed as a list of usability problems. It may also include an assessment of the

quality of the use cases. The evaluation product is subsequently fed back into the
interaction design activity [18].

3.1 Guidelines for Inspection

UCE provides a set of usability guidelines that we suggest as being particularly apt
for use case inspection, see Table 1. The guidelines were originally derived from
previous research. Our aim has not been to make the guidelines non-overlapping, but
merely to provide rich and varied support for identifying usability problems.

UCE is based mainly on heuristics introduced as part of Heuristic Evaluation
[30,31]. These heuristics were chosen because they have shown to be applicable
across a wide range of contexts, and because they are among the most extensively
validated inspection guidelines. Some of these heuristics do, however, concern details
of the user interface design that will typically not be specified at the time use case
evaluation is likely, for instance the heuristics ‘Aesthetic and minimalist design’ and
‘Help and documentation’. Therefore, they have been excluded from our list.

We have supplemented the heuristics with guidelines from other methods that help
focus on other usability concerns, or provide better examples or more detail (see
Table 1). Guideline 9 is based on a principle from Cognitive Dimensions [13],
somewhat similar to an Ergonomic Criteria [13] on designing for low workload. We
also used Cognitive Dimensions [13] to add guideline 10 on premature commitment.
Premature commitment occurs when software requires users to do an action or supply
information that they are not ready to do or supply. It is related to a principle in
Cognitive Walkthrough [40]. Guideline 11 was motivated by the idea that early
evaluation on use cases should help establish the utility of the proposed functionality.
In particular, we wanted to allow evaluators to focus on issues like task relevance and
missing functionality. It has been suggested that evaluators might be less attentive to
utility issues than to issues of convenience and to surface-level interface issues [33].

3.2 Inspection of Use Cases

With UCE, the main activity is to inspect the use cases for usability problems. The
aim is to identify usability problems that the evaluator is convinced one or more
prospective users will experience. A usability problem is (cf [29])

Guidelines Use cases

Assessment of
Use Cases

Documentation
of Evaluation

Evaluation products

Inspection of
Use Cases

Fig. 1. Overview of Activities and Materials in Use Case Evaluation (UCE).

an aspect of the system that will hinder or delay the user in completing a task, be
difficult or impossible for the user understand, or cause the user to be frustrated.

The inspection activity is conducted by one or more evaluators. It involves the
following two steps: Brainstorm and Systematic Inspection. In the first step,
Brainstorm, the evaluator goes through the use cases one by one without following
any systematic procedure. The evaluator notes the usability problems that may be
predicted from the use cases.

In the second step, Systematic Inspection, the evaluator employs a structured
procedure for inspection of use cases. This procedure follows the one proposed in the
early papers on Heuristic Evaluation [30,31]. It is supported with the guidelines
presented above (see Table 1). The inspection typically lasts one to two hours. The
use cases are inspected one by one. For each use case, the evaluator tries to predict the
usability problems a user will experience while carrying out the use case. In doing
this, the evaluator employs the guidelines. The aim is to couple the ideals of the
guidelines to the use cases, trying to see similarities and cases where a guideline may
be breached. As recommended for heuristic evaluation, it is fruitful to go over all use
Table 1. Guidelines for Use Case Evaluation.

No Guideline Explanation Sources
1 Visibility of system

status
The system should always keep users informed about what is
going on, through appropriate feedback within reasonable
time

[31]

2 Match between system
and the real world

The system should speak the users' language, with words,
phrases and concepts familiar to the user, rather than system-
oriented terms. Follow real-world conventions and make
information appear in a natural order.

[31]

3 User control and
freedom

Users often choose system functions by mistake and will
need a clearly marked "emergency exit" to leave the
unwanted state without having to go through an extended
dialogue. Support undo and redo.

[31]

4 Consistency and
standards

Users should not have to wonder whether different words,
situations, or actions mean the same thing. Follow platform
conventions.

[31]

5 Error prevention Even better than good error messages is a careful design
which prevents a problem from occurring in the first place.
Eliminate error-prone conditions or handle them gracefully.

[31]

6 Recognition rather than
recall

Minimize the user's memory load by making objects, actions,
and options visible. The user should not have to remember
information from one part of the dialogue to another.

[31]

7 Flexibility and
efficiency of use

Accelerators -- unseen by the novice user -- may often speed
up the interaction for the expert user such that the system can
cater to both inexperienced and experienced users.

[31]

8 Help users recognize,
diagnose, and recover
from errors

Error messages should be expressed in plain language (no
codes), precisely indicate the problem, and constructively
suggest a solution.

[31]

9 Avoid hard mental
operations and lower
workload

Do not force the user into hard mental operations and keep
the user’s workload at a minimum.

[13,31]

10 Avoid forcing the user
to premature
commitment

Do not force the user to perform a particular task or decision
until it is needed. Will the user know why something must be
done?

[13,40]

11 Provide functions that
are of utility to the user

Consider whether the functionality described is likely to be
useful to users and whether functions/data are missing.

[33]

cases at least twice. The evaluator produces a list of usability problems; if more than
one evaluator inspects the interface the evaluators’ lists are merged into one joint list.

3.3 Assessment of Use Cases

A secondary activity is to assess the quality of the use cases. In contrast to heuristic
evaluation of a fully functional system, there is likely to be several cases where a use
case does not give an evaluator sufficient information to decide whether or not a
guideline is breached. In those cases, supplementing information may need to be
provided or the evaluator may simply express why something cannot be properly
analyzed. Sometimes, the use cases will not be specific enough to allow evaluation. In
other cases, they will be too specific, e.g., by specifying user interaction details that
can be decided later in the development process. Thus the outcome is an assessment
of each use case, which emphasizes how useful the use case is for inspection. In
practice, this activity is done in parallel with the primary evaluation activity.

3.4 Documentation of Evaluation

In this activity, the results are compiled into a coherent evaluation product that may
be fed back into interaction design. The main content of the documentation is the list
of usability problems. This list describes problems that the evaluators expect a
prospective user will face when using the system. Each of these predicted usability
problems should include a clear reason why it is perceived to be a problem. For
example, the reason could be a reference to a guideline. As with heuristic evaluation,
evaluators should describe only one problem at a time and be as specific as possible.
Finally, we suggest that evaluators note ideas for improving the system or designing it
differently. A supplementary evaluation product is the assessment of each use case.

4 Empirical Study

The method described above needs to be assessed with respect to its usefulness for
use case evaluation. Thus we conducted an empirical study aimed at (a) comparing
usability problems identified with the UCE method to a set of problems discovered
with think-aloud testing and (b) understanding what problems evaluators experience
in using UCE and which guidelines that are particularly useful for inspecting use
cases. The rationale for (a) is to investigate if the UCE method find problems that
appear in a final version of a system. The rationale for (b) is to obtain input that may
be used to improve early us case inspection with the UCE method.

4.1 Evaluators

We had four evaluators use the UCE method to evaluate use cases; two of them are
among the authors of this paper. We chose to use four evaluators because it conforms

to the often recommended, though controversial, number of evaluators for inspection
[e.g., 32], and because it seemed a realistic number of evaluators to find when
bringing UCE to practical use. The evaluators were all experienced with usability
work (from two to eight years of experience) and all had conducted several think-
aloud tests and usability inspections. Two of the evaluators had a master degree in
computer science and were working in industry, one was a PhD student working with
usability evaluation, and one was associate professor in human-computer interaction.

4.2 System and Use Cases for Evaluation

The system under evaluation is a health care application (here called the
HealthMonitor) that monitors elderly persons’ medical conditions in their homes. For
instance, it might be needed to monitor their weight, blood glucose level, or blood
pressure. The HealthMonitor assists in transmitting the results through a telephone
line to a central server, where they can be interpreted by medical staff. If a
measurement in some way alerts the medical staff they can decide to recommend the
patient to see a doctor, adjust the intake of medicine, or some other remedial action.
The HealthMonitor requires connection to the telephone and interfaces with
measuring devices relevant to the elderly persons’ health conditions. These measuring
devices might be a bathroom scale or a device for measuring blood pressure.

A set of four use cases was described for the HealthMonitor. The use cases
describe situations where users of the HealthMonitor set up the hardware, use it with
different measuring devices, and transfer relevant data to a central server. The use
cases were written in the style of Cockburn [5] as fully dressed use cases, meaning
that they were semi structured with sections on Goal in Context, Successful End
Condition, Primary Actors, and a Main Success Scenario (see Fig. 2 for an example).
The four use cases were an average of 472 words long and their main scenarios
consisted of 6 to 19 steps. Though the use cases were not taken from the actual
development activity (because no use cases had been created originally), they were
validated through review by a group of master thesis students who had worked with
the HealthMonitor for half a year.

Use case 02: Registration of blood glucose measurement (cabled connection)
CHARACTERISTIC INFORMATION

Goal in Context: The user wants to transfer the result of his newly taken blood glucose measurement from the blood glucose measurement device
to the HealthMonitor.

Scope: Enterprise
Level: Summary
Preconditions: A successfully conducted blood glucose measurement. A successfully installed HealthMonitor (Use case 01)
Success End Condition: The blood glucose measurement result is successfully transferred to the HealthMonitor
Failed End Condition: The blood glucose measurement result is not transferred to the HealthMonitor
Primary Actor: A person with a physical health condition that needs daily monitoring.
Trigger: The user wants to register a blood glucose measurement

MAIN SUCCESS SCENARIO

 1. The step-by-step instruction for transferring blood glucose measurements from the measuring device to the HealthMonitor is found
 2. The two devices is connected using the relevant cable
 3. The blood glucose measurement device identifies the connection, and shows the message “PC” in the display
 4. The HealthMonitor shows in the display that a transfer is ongoing
 5. The HealthMonitor shows in the display the amounts of measurement results that were available in the blood glucose measurement device,

and the HealthMonitor also shows how many of those measurement results that have been transferred. The information on the display of the
HealthMonitor is further more read aloud to the user by the HealthMonitor.

Fig. 2. Excerpt of Use Case for Connecting a Blood Glucose Device to the HealthMonitor.

4.3 Procedure for Evaluation and Matching of Problems

The evaluations were conducted individually. The evaluators received descriptions of
(a) the procedure to be followed, including an instruction on how to describe usability
problems, (b) the UCE method, corresponding to the contents of Section 3, (c) the
four use cases and an explanation of how to read them, and (d) an explanation of the
HealthMonitor’s general use context, target users, and basic aims.

To document the evaluation, each usability problem was to be reported by
specifying its title and the place or places in the use cases that aided in predicting the
problem. The evaluators also assigned a severity rating to each problem, choosing
from among three ratings [29]: cosmetic (1), meaning that the user is delayed less than
one minute or becomes slightly annoyed; serious (2), meaning that the problem would
delay the user for several minutes or present information or options that to some
extent differ from the user’s expectations; and critical (3), meaning for instance that
the user would be unable to continue or become strongly annoyed.

Previous studies [e.g., 8,19] have suggested that studying the process of evaluation
may give rich information about benefits and drawbacks of inspection methods and
their use. Consequently we adapted the extended reporting format proposed by
Cockton et al. [9] by requiring evaluators to answer questions about the manner in
which a problem was discovered, the guidelines used to predict a problem (and a
comment on why a guideline was used), and if something initially considered a
usability problem was excluded from the final problem report. Furthermore, we asked
the evaluators to comment on difficulties in using a use case to predict a problem.

After the evaluators had completed their evaluations they met to match the
problems, that is, to agree on which problems that were similar and which were
unique. A total of nine hours were used on matching. After matching, each evaluator
checked that the matching was correct in their view and that they agreed on how
problems were treated. Below we refer to problems found by individual evaluators as
problem tokens and matched problems as problem types.

4.4 Comparison to Usability Problems Found with Think-Aloud Testing

Problems predicted with UCE were compared to a set of usability problems found by
think-aloud testing with the aim of discussing which problems would be useful to
predict. The think-aloud test was conducted by one of the authors of this paper (who
did not inspect the use cases) and five students working on a master thesis in human-
computer interaction. The system was tested in five user sessions, each lasting about
one hour. The sessions were based on predefined tasks that covered the same areas as
the four use cases mentioned above. The sessions were recorded on video. Two of the
students and the author did an Instant Data Analysis [27] immediately following each
test session. This resulted in one list of usability problems. The other three students
conducted a conventional video analysis with transcripts and log files to generate
another list of usability problems. These two methods were used for analysis to
identify as rich a problem set as possible. The resulting two lists of usability problems
were merged by the evaluators through negotiation. The resulting common list

included 54 usability-problem types. Below we refer to these problems as think-aloud,
or TA, problems.

Similarly to John and Marks [25], we further analyzed the overlap among problems
types found by the two evaluation methods. The intuition is as follows (see Table 2).
For a problem found with TA but not found with UCE two possibilities exist. One is
that a problem could simply not be predicted from the use case, for example because
the problem concerned user interface issues decided on during implementation,
difficulties with manuals and support, or performance issues (we call these problems
impossible or hard to predict). Another possibility is that the problem was predictable
but missed by UCE (predictable but missed). A similar analysis can be made for
usability problems predicted by UCE but not found with TA. For such problems we
distinguish three possibilities. First, a predicted problem may represent an actual
problem or a sensible concern about usability related issues (what we call a relevant
problem). This happens for example because a possibility for error has not been
removed or because of a lack of feedback. Second, a predicted problem could have
become a problem, but the actual design of the HealthMonitor has avoided the
problem (a problem avoided). This happens for instance when feedback is given in
the actual interface or when an unclear action is better explained. Thus, raising the
problem as a concern early in the design process would have been valuable. Third, a
predicted problem may not be an actual problem or legitimate design concern (i.e.,
essentially of no value as feedback or not a problem). An example is problems that
merely speculated about a potentially difficult, but highly improbable, use situation.
Each problem was rated individually by the authors on the above dimensions and
disagreements were settled through discussion.

5 Results

We characterize the results of the evaluation by first discussing the problems
predicted by UCE, then discussing the overlap to think-aloud testing, and finally
summarizing the evaluators’ experiences with using the method.

5.1 Problems Predicted

Using UCE each evaluator predicted an average of 23 problem tokens (SD = 5.6,
ranging from 18 to 31 predictions). The average severity of the problem tokens
predicted were 1.75 (SD = 0.79). The matching of problems allowed a set of problem
types predicted by UCE to be formed, comprising 61 types. This problem set shows
that evaluators have relatively limited overlap with each other: the number of unique
problems (i.e., problems predicted by just one evaluator) is on average 5.25 (SD =
3.69). Two problem types (covering 3% of all problem tokens) were identified by all
evaluators, 5 types (8%) by three evaluators, and 18 (30%) by two evaluators.
Another way of illustrating this is to calculate the any-two agreement, suggested by
Hertzum and Jacobsen [16] as a indicator of the evaluator effect. By that measure, the
average agreement among evaluators is 18.9%. While this number is within the range

of evaluator agreement found by Hertzum and Jacobsen, it suggests substantial
variation among evaluators.

5.2 Overlap Between UCE and TA

The matching of problem types found by UCE and think-aloud testing allows us to
calculate the overlap between methods. As shown in Table 2, we find an overlap of
24%. Thirty-nine usability problems were predicted with UCE but not found by TA;
32 usability problems were found by TA but not predicted by UCE.

Table 2 also shows that about two-thirds of the problems found by TA but missed
by USE could not have been predicted. These problems concern unpredictable actions
by the user and issues that arise from design solutions at a more detailed level than the
use cases. A special instance of non-predictable problems concerns the direct transfer
of technical terms from the use cases (“detecting a phone line”) to the interface.

The problem types predicted with UCE but not found with think-aloud testing were
more difficult to reason about. The bottom part of Table 2 shows that similar
proportions of the problems predicted by UCE but not found with TA were seen
relevant (14 problems) and not-a-problem (16 problems). Among those problems
found relevant, many appear not to have been found by TA because the test setting
prohibited them from occurring. Conversely, the problems that seemed irrelevant
often assumed quite intricate and improbable contexts of use. This type of predictions
from inspection techniques has previously been noted [7]. These analyses show that
overall 45 of the 61 UCE problems (74%) would be useful to know (22 problem types
found by TA, 14 problem types that seen as relevant problems, 9 problem types
avoided in the user interface). If we consider just problems predicted by UCE but not
found with TA, 59% appear useful.

In order to learn more about the usability problems found with UCE, all problem
types were analyzed with a simple grounded theory approach [36]. The result of the
analysis was five overall areas where usability problems were found. The five areas
are presented in the Table 3, together with the number of problems each method
identified. Table 3 indicates that there is a large overlap in the types of usability

Table 2. Problems predicted with the use case inspection (UCE) in relation to those found in
think-aloud tests (TA). Percentages are relative to the total number of problem types (93).

Predicted
with UCE

Found
with TA

Number of
problem
types

Problem category Number of problem
types in category

YES YES 22 (24%) - -

NO YES 32 (34%)
 Impossible or hard to predict 20 (21%)
 Predictable but missed 12 (13%)
YES NO 39 (42%)
 Relevant problem 14 (15%)
 Problems avoided in UI 9 (10%)
 Not a problem 16 (17%)

problems the two methods identifies. Looking at the specific problems, however,
shows that the problems found by TA concern issues directly related to the evaluation
tasks and the test setup, whereas UCE also predicts problems that are unlinked to the
evaluation task and setup, such as problems related to breakdowns that were not a part
of the test setup.

5.3 Evaluators’ Experiences and Use of Guidelines

Evaluators used between 2.5 and 5 hours on preparing, conducting and reporting the
evaluation (M = 3.65 hours, SD = 1.35). Time was mainly used for performing the
actual evaluation (about two hours) and reporting the problems (about one hour).

Evaluators’ comments on the process of evaluating give a couple of insights. Three
evaluators commented on the role of imagination during the inspection. They
suggested that evaluating use cases is demanding because they require the evaluator
to be creative in filling in the many details that are not described in the use cases.
Further, with HealthMonitor, imagining the physical appearance of the device was
difficult. One evaluator noted that “when running through the use cases the
understanding of how the devices look physically becomes an exercise in subjective
imagination. This imagination may be way off the intended product”.

Two evaluators commented that many predicted problems might or might not turn
out to be problems when the system was implemented. One of them mentioned the
feeling that “one often is describing ‘maybe problems’”. Another evaluator mentioned
that predicted problems might turn out not to be problems after all; in the description
of several of the predicted problems that evaluator listed good reasons why something
might not be a problem after all. Also, one evaluator noted that predictions may only
concern the writing of a use case, not how that use case ends up being implemented.

Two evaluators noted that it was somewhat difficult to use the guidelines during
inspection. One of the evaluators noted that “I don’t think I would have found fewer
[problems] without them [the guidelines]”.

Finally, one evaluator pointed out that it was difficult to predict problems
concerning the relation among use cases, because the evaluation procedure only
required use cases to be considered individually, not in concert. Problems concerning
consistency between use cases, for instance, would rarely be reported. From
evaluators’ reports it is possible to describe which guidelines are used most
frequently. The most frequently used guidelines are 1, 5 and 2; these guidelines are
mentioned in 30%, 18%, and 15% of the problems that describe the guideline(s) used
Table 3. Usability problems categories distributed by areas (N = 93). Note that a problem may
be related to several areas, so column sums are higher than the number of problems.

Types Total Found with TA Found with UCE

Dialogue 38 25 30
External factors 4 1 3
Graphical User Interface 27 15 20
Installation of equipment 38 29 19
Procedure / task flow 38 18 26

for discovery. These numbers corroborate the findings about problem types. Though
all guidelines were used, guidelines 9, 6, and 3 were each used in 2% or fewer cases.

6 Discussion

Our study shows that the UCE method for inspection of use cases made it possible to
predict a large portion of the usability problems identified in a conventional think-
aloud test of the system. With UCE, the evaluators were able to find 22 usability
problems out of the 54 problems found with the conventional approach, and they were
able to describe a broad variety of usability problems in detail. Further, many of the
predicted problems not seen with the conventional evaluation approach are assessed
as being useful. These results suggest that it is feasible and of use to conduct usability
inspections on use cases.

The fundamental idea of UCE, to evaluate the usability based on a design product
that is available early, could have additional important benefits. First, the inspection
of use cases may introduce thinking about usability early and naturally in the software
development process. Second, the inspection of use cases may uncover and emphasize
non-functional requirements that can be added to the use cases. Third, the inspection
may improve the overall quality of the use cases. These benefits, however, remain to
be empirically documented.

The idea of UCE is inherited from the group of usability evaluation methods
commonly referred to as inspection or walkthrough methods. An essential limitation
of for these methods is the identification of false positives. This refers to the problems
that are found in an inspection but not in a think-aloud test. The opposite difficulty is
the usability problems that are found with a conventional usability evaluation but not
with UCE. Some of these problems can never be found. When this is taken into
account, there are only 12 problem types found with the conventional method that
were not found with UCE.

The data on the use of UCE uncovered potential improvements. They include the
style of writing use cases (Cockburn, 2000), the set of guidelines we have developed
for the evaluators and a step with inspection across the whole collection of use cases
with the purpose of discovering inconsistencies between them.

7 Conclusion

We have presented a method called Use Case Evaluation (UCE) tailored for early
usability evaluation. It is generally agreed that usability problems should be identified
as early as possible in software development. This is, however, difficult to achieve
with conventional usability evaluation methods. The UCE method overcomes this
problem by predicting usability problems from inspection of use cases. The advantage
of this approach is that use cases are often available early in the development process.

To validate the UCE method, we compare it to a conventional think-aloud test.
About one fourth of all problems were found by both think-aloud testing and
inspection of use cases. In addition, three-quarters of the total number of predicted

problems was assessed as useful input to early development. We have also collected
qualitative data on the evaluators’ experience using the method, which indicate that
use case inspection requires a lot of imagination.

This paper is based on an empirical study that is limited in a couple of respects.
First of all, we did not assess impact of UCE evaluation in a real-life context, with use
cases crafted by software developers as part of their activities. Second, the study was
not a strict experiment, in that participants were not randomly assigned to either
think-aloud testing or to the UCE method. Third and finally, the method needs
validation with non-expert participants. Moreover, the study was partly conducted by
the authors of this paper, who have also developed the method. Therefore, it is
necessary with a follow-up study conducted by other researchers. The inspections
were conducted by usability experts. It would also be interesting to explore to what
extent less experienced evaluators could carry out the inspection. Despite these
limitations, our paper suggests that inspection of use cases may help introduce
effective usability evaluation early in software development processes.

Acknowledgments. The research behind this paper was partly financed by the Danish
Research Councils (grant number 2106-04-0022). We are grateful to Janne Jul Jensen
and Christian Monrad Nielsen for serving as evaluators.

References

1. Anda B & Sjøberg DI (2002). Towards an inspection technique for use case models.
Proceedings of the 14th international Conference on Software Engineering and Knowledge
Engineering (pp. 127-134).

2. Anderson J, Fleek F, Garrity K, & Drake F (2001). Integrating Usability Techniques into
Software Development. IEEE Software, 18, 1, 46-53.

3. Bittner K & Spence I (2002). Use case modeling. Addison-Wesley.
4. Carroll J (1995). Scenario-based design - envisioning work and technology in system

development. John Wiley &. Sons
5. Cockburn A (2000). Writing effective use cases. Addison Wesley.
6. Cockburn A (2002). Use cases, ten years later. STQE Magazine, Mar/Apr, Mar/Apr.
7. Cockton G, Lavery D, & Woolrych A (2003). Inspection-based evaluations. In Jacko JA &

Sears A (Eds.), The human-computer interaction handbook (pp. 1118-1138).
8. Cockton G, Woolrych A, Hall L, & Hindmarch M (2003). Changing Analysts' Tunes.

Proceedings of People and Computers XVII: Designing for Society (pp. 145-162).
9. Cockton G, Woolrych A, & Hindemarch M (2004). Reconditioned merchandise: extended

structured report formats in usability inspection. Proceedings of CHI2004 (pp. 1433-1436).
10.Constantine L & Lockwood L (1999). Software for Use: A Practical Guide to the Models

and Methods of Usage-Centered Design. Addison Wesley.
11.Dumas JS (2003). User-based Evaluations. In Jacko JA & Sears A (Eds.), The human-

computer interaction handbook (pp. 1093-1117).
12.Ferré X, Jurisot N, Windl H, & Constantine L (2001). Usability Basics for Software

Developers. IEEE Software, 18, 1, 22-29.
13.Green TRG (1989). Cognitive Dimensions of Notations. In Proceedings of People and

Computers V (pp. 443-460).
14.Haynes SR, Purao S, & Skattebo AL (2004). Situating evaluation in scenarios of use. In

Proceedings of CSCW 2004 (pp. 92-101).

15. Hertzum M (2003). Making use of scenarios: a field study of conceptual design.
International Journal of Human-Computer Studies, 58, 2, 215-239.

16. Hertzum M & Jacobsen NE (2001). The evaluator effect: A chilling fact about usability
evaluation methods. International Journal of Human-Computer Interaction, 13, 421-443.

17.Holtblatt K, Wendell JB, & Wood S (2005). Rapid contextual design. Morgan Kaufman.
18. Hornbæk K & Stage J (2006). The Interplay Between Usability Evaluation and User

Interaction Design. International Journal of Human Computer Interaction, 21, 2, 117-123.
19. Hornbæk K & Frøkjær E (2004). Two psychology-based usability inspection techniques

studied in a diary experiment. Proceedings of Nordichi 2004 (pp. 1-8).
20.Jacobson I (1987). Object oriented development in an industrial environment. In

Proceedings of OOPSLA '87 (pp. 183-191). New York, NY: ACM.
21.Jacobson I, Booch G, & Rumbaugh J (1999). The unified software development process.

Boston, MA: Addison-Weley.
22.Jagielska D, Wenick P, Wood M, & Bennett S (2006). How Natural is Natural Language?

How Well do Computer Science Students Write Use Cases? Proceedings of OOPSLA'06
(pp. 914-923).

23. Jarke M, Bui XT, & Carroll J (1998). Scenario management: an interdisciplinary approach.
Requirements Engineering, 3, 3&4, 155-173.

24. John BE & Mashyna MM (1997). Evaluating a Multimedia Authoring Tool. Journal of the
American Society of Information Science, 48, 9, 1004-1022.

25. John BE & Marks SJ (1997). Tracking the effectiveness of usability evaluation methods.
Behaviour & Information Technology, 16, 4/5, 188-202.

26. Juristo N, Windl H, & Constantine L (2001). Introducing usability. IEEE Software, 20-21.
27. Kjeldskov J, Skov M, & Stage J (2004). Instant Data Analysis. Proceedings of the third

Nordic conference on Human-computer interaction (pp. 233-240).
28. Larman C (1998). Applying uml and patterns: an introduction to object-oriented analysis

and design. Upper Saddle River, NJ: Prentice Hall.
29. Molich R (2005). brugervenligt webdesign. Nyt Teknisk Forlag.
30. Molich R & Nielsen J. (1990). improving a human-computer dialogue. Communications of

the ACM, 33(3), 338-348.
31. Nielsen J (1994). Heuristic Evaluation. In Nielsen J & Mack R (Eds.), usability inspection

methods (pp. 25-62). John Wiley & Sons.
32.Nielsen J & Landauer T (1993). A mathematical model of the finding of usability problems.

Proceedings of CHI 1993 (pp. 206-213).
33.Nørgaard M & Hornbæk K (2006). What Do Usability Evaluators Do in Practice? An

Explorative Study of Think-Aloud Testing. In Proceedings of DIS2006.
34. Scapin DL & Bastien JMC (1997). Ergonomic Criteria for Evaluating the Ergonomic

Quality of Interactive Systems. Behaviour & Information Technology, 16, 4/5, 220-231.
35.Seffah A, Djouab R, & Antunes H (2001). Comparing and reconciling usability-centered

and use case-driven requirements engineering processes. Proceedings of the 2nd
Australasian conference on User interface (pp. 132-139).

36. Straus A & Corbett J (1998). Basics of qualitative research. Sage.
37. Tao Y (2005). Developing Usable GUI Applications with Early Usability Evaluation. In

Proceedings of Proceedings: Software Engineering - 2005.
38.van der Poll JA, Kotzé P, Seffah A, Radhakrishnan T, & Alsumait A (2003). Combining

UCMs and Formal Methods for Representing and Checking the Validity of Scenarios as
User Requirements. Proceedings of SAICSIT 2003 (pp. 59-68).

39.Walker M, Takayama L, & Landay JA (2002). High-fidelity or Low Fidelity, Paper or
Computer? Proceedings of HFES 2002 (pp. 661-665).

40. Wharton C, Rieman J, Lewis C, & Polson P (1994). The cognitive walkthrough method: a
practitioner's guide. In Nielsen J & Mack RL (Eds.), Usability inspection methods (pp. 105-
140). John Wiley & Sons.

